Published 09-11-2025
Keywords
- Amplitude-Shift Keying,
- Frequency-Shift Keying,
- Phase-Shift Keying,
- Digital Modulation Techniques
Copyright (c) 2025 Lydia Dede Obeng, Michael Aguadze, Isaac Papa Kwesi Arkorful (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Digital modulation techniques are fundamental to modern communication systems, enabling the reliable transmission of data over wireless, optical, and wired channels. This research focuses on designing, implementing, and visualizing three key digital modulation schemes: Amplitude-Shift Keying (ASK), Frequency-Shift Keying (FSK), and Quadrature Phase-Shift Keying (QPSK) using MATLAB Simulink and the Raspberry Pi 4 platform. Performance evaluation through oscilloscope visualization demonstrated robust signal integrity: the 2-ASK transmitter exhibited clear amplitude changes at a 15 kHz carrier frequency, accurately representing binary data with minimal observed noise (qualitative SNR improvement over unmodulated signals) and negligible distortion. The 2-FSK transmitter produced distinct frequency shifts between 4.8 kHz and 9.6 kHz, encoding binary 1 and 0 with low error potential in noise-free conditions, as confirmed by waveform observations. The QPSK transmitter displayed smooth phase transitions at 15 kHz, cycling through four phase states (45°, 135°, 225°, 315°), effectively doubling the data rate compared to BPSK while maintaining phase accuracy within hardware latency limits (approximately 10-20 ms processing delay). The ability to visualize and analyze these methods supports the development of improved modulation schemes, contributing to more efficient and robust digital communication systems.
References
- L. Giroto de Oliveira, B. Nuss, M. B. Alabd, A. Diewald, M. Pauli, and T. Zwick, ‘Joint Radar-Communication Systems: Modulation Schemes and System Design’, IEEE Trans Microw Theory Tech, vol. 70, no. 3, pp. 1521–1551, Mar. 2022, doi: 10.1109/TMTT.2021.3126887.
- D. Ma et al., ‘Spatial Modulation for Joint Radar-Communications Systems: Design, Analysis, and Hardware Prototype’, IEEE Trans Veh Technol, vol. 70, no. 3, pp. 2283–2298, Mar. 2021, doi: 10.1109/TVT.2021.3056408.
- C. Ofori, J. Cudjoe Attachie, and F. Obeng-Adjapong, ‘A GSM-Based Fault Detection on Overhead Distribution Lines’, Jurnal Nasional Teknik Elektro, vol. 12, no. 2, pp. 70–79, Jul. 2023, doi: 10.25077/jnte.v12n2.986.2023.
- S. Ansari, K. A. Alnajjar, M. Saad, S. Abdallah, and A. A. El-Moursy, ‘Automatic Digital Modulation Recognition Based on Genetic-Algorithm-Optimized Machine Learning Models’, IEEE Access, vol. 10, pp. 50265–50277, 2022, doi: 10.1109/ACCESS.2022.3171909.
- Y. Qin, ‘Design of Digital Modulation for Long Distance Optical Communication’, in 2024 4th International Conference on Electronic Information Engineering and Computer (EIECT), IEEE, Nov. 2024, pp. 692–695. doi: 10.1109/EIECT64462.2024.10866453.
- G. Pasolini, A. Bazzi, and F. Zabini, ‘A Raspberry Pi-Based Platform for Signal Processing Education [SP Education]’, IEEE Signal Process Mag, vol. 34, no. 4, pp. 151–158, Jul. 2017, doi: 10.1109/MSP.2017.2693500.
- Y. Xiang, ‘Performance Analysis of an Ultra-Low Power MFSK System’, UC San Diego, 2022. [Online]. Available: https://escholarship.org/uc/item/73k5d8ds
- D.-T. Nguyen, H.-N. Le, Q.-K. Trinh, T.-H.-T. Tran, and T.-A. Vu, ‘A Novel Efficient Hardware Implementation of Symbol Timing and Carrier Phase Synchronizer for QPSK Receivers’, in 2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS), IEEE, Nov. 2023, pp. 39–44. doi: 10.1109/ICCAIS59597.2023.10382404.
- V. Avalos-Bravo, J. Toro-González, and E. Velazquez-Morales, ‘Development of a MATLAB® MOOC to Enhance the Computational Skills of Students’, in Perspectives and Trends in Education and Technology (ICITED 2023), vol. 366, Singapore: Springer, 2023, pp. 131–139. doi: 10.1007/978-981-99-5414-8_14.
- K. Jathursajan and A. Wijethunge, ‘Raspberry Pi-Based Bearing Fault Diagnosis by Bearing Audio and Vibration Signal Via Cost-Effective Accelerometer’, in Proceedings of the International Women in Engineering Symposium, 2022, pp. 28–30.
- M. A. Al Zubaidy, S. L. Qaddoori, and N. T. Gadawe, ‘Efficient design and implementation of the realtime multi types digital modulations system based FPGA’, Journal of Engineering Science and Technology (JESTEC), vol. 18, no. 2, pp. 974–989, Apr. 2023.
- M. Margarat, B. E. Caroline, and S. Soumiya, ‘SOA-MZI-Based Nanoscale Optical Communication with various Modulation Formats’, in Nanoelectronic Devices for Hardware and Software Security, Boca Raton: CRC Press, 2021, pp. 179–199. doi: 10.1201/9781003126645-9.
- J. Wang, J. Liu, S. Li, Y. Zhao, J. Du, and L. Zhu, ‘Orbital angular momentum and beyond in free-space optical communications’, Nanophotonics, vol. 11, no. 4, pp. 645–680, Feb. 2022, doi: 10.1515/nanoph-2021-0527.
- P. Velez et al., ‘Single-Frequency Amplitude-Modulation Sensor for Dielectric Characterization of Solids and Microfluidics’, IEEE Sens J, vol. 21, no. 10, pp. 12189–12201, May 2021, doi: 10.1109/JSEN.2021.3062290.
- E. S. Lee, ‘Frequency-Modulation-Based IPT With Magnetic Communication for EV Wireless Charging’, IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1398–1408, Feb. 2023, doi: 10.1109/TIE.2022.3158027.
- Z. Liu, Y. Liu, Z. Mai, Y. Yang, N. Zhou, and C. Yu, ‘Enhancing weak-magnetic-field sensing of a cavity-magnon system with dual frequency modulation’, Phys Rev A (Coll Park), vol. 109, no. 2, p. 023709, Feb. 2024, doi: 10.1103/PhysRevA.109.023709.
- J. Li, H. Yang, Q. Yi, M. Lu, J. Shi, and T. Zeng, ‘High-Frequency Modulated Transformer for Multi-Contrast MRI Super-Resolution’, IEEE Trans Med Imaging, vol. 44, no. 7, pp. 3089–3099, Jul. 2025, doi: 10.1109/TMI.2025.3558164.
- T. A. Salih, ‘Design and Implementation of a Low Power Consumption of ASK, FSK PSK, and QSK Modulators Based on FPAA Technology’, Int J Adv Sci Eng Inf Technol, vol. 11, no. 4, pp. 1288–1294, Aug. 2021, doi: 10.18517/ijaseit.11.4.11299.
- K. Kaza, S. Pallapu, T. R. Chintala, and M. Samson, ‘Reconfigurable FPGA Based ASK, FSK and PSK Modulator and Automatic Demodulator’, in 2024 Asia Pacific Conference on Innovation in Technology (APCIT), IEEE, Jul. 2024, pp. 1–8. doi: 10.1109/APCIT62007.2024.10673600.
- X. H. Cao, X. J. Fan, M. Li, N. H. Zhu, and W. Li, ‘Microwave photonic multi-frequency reconfigurable PSK/ASK/FSK formats modulation signals generation’, Opt Commun, vol. 550, p. 129953, Jan. 2024, doi: 10.1016/j.optcom.2023.129953.
- W. Tang, ‘Analysis of the principle and applications of state-of-art digital modulation techniques’, IET Conference Proceedings, vol. 2024, no. 24, pp. 460–464, Jan. 2025, doi: 10.1049/icp.2024.4551.
- Y. Zhang, Z. Zhao, X. Feng, T. Zhao, and Q. Hu, ‘Implementation of Underwater Electric Field Communication Based on Direct Sequence Spread Spectrum (DSSS) and Binary Phase Shift Keying (BPSK) Modulation’, Biomimetics, vol. 9, no. 2, p. 103, Feb. 2024, doi: 10.3390/biomimetics9020103.
- G. N. Kareem, G. A. Gbotoso, and S. O. Omogoye, ‘MATLAB analysis and simulink model for amplitude modulation technique’, World Journal of Advanced Engineering Technology and Sciences, vol. 2, no. 2, pp. 021–028, May 2021, doi: 10.30574/wjaets.2021.2.2.0035.