Vol. 2 No. 2 (2025)
Articles

Enhancing Audio Data Transfer Through Optical Wireless Communication Using Laser Modulation Techniques

Sam Robert James
University of Mines and Technology, Ghana
Lambert Dwomoh
Norfolk State University, United States
Raji Fawaz
University of Mines and Technology, Ghana

Published 06-10-2025

Keywords

  • Wireless Communication,
  • Laser Diode,
  • Audio Signal,
  • Proteus

How to Cite

[1]
S. R. James, L. Dwomoh, and R. Fawaz, “Enhancing Audio Data Transfer Through Optical Wireless Communication Using Laser Modulation Techniques”, Appl. Eng. Innov. Tech., vol. 2, no. 2, pp. 82–97, Oct. 2025, doi: 10.62777/aeit.v2i2.82.

Abstract

Exploring the potential of optical wireless communication for short-range audio transmission, this research investigates the design of a portable system leveraging the inherent benefits of light-based propagation, such as low power consumption, license-free operation, and enhanced security. While line-of-sight alignment is a key consideration in laser communication, this research outlines a practical approach to system development. A 650 nm laser diode serves as the carrier for the audio signal. The system architecture, comprising a transmitter and receiver, was initially designed and simulated using Proteus software. Each unit was individually implemented and tested to ensure optimal performance. Subsequent integration of these modules and careful line-of-sight alignment enabled successful audio signal transmission and reception. The audible output at the receiver is visually confirmed by a blinking speaker, demonstrating the feasibility of this optical wireless audio communication system. This work offers valuable insights into the design and implementation considerations for such portable applications.

References

  1. M. M. Abdulwahid and S. Kurnaz, “The channel WDM system incorporates of Optical Wireless Communication (OWC) hybrid MDM-PDM for higher capacity (LEO-GEO) inter satellite link,” Optik (Stuttg), vol. 273, p. 170449, Feb. 2023, doi: 10.1016/j.ijleo.2022.170449.
  2. I. Arkorful, D. Williams, D. Wondoh, and I. Ampem, “Optimizing Mill Grinding Media Charging to Enhance the Efficiency of the Comminution Process using PLC and SCADA,” IJISET - International Journal of Innovative Science, Engineering & Technology, vol. 11, no. 10, pp. 36–45, 2024.
  3. A. Celik, I. Romdhane, G. Kaddoum, and A. M. Eltawil, “A Top-Down Survey on Optical Wireless Communications for the Internet of Things,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 1–45, Nov. 2023, doi: 10.1109/COMST.2022.3220504.
  4. M. Bhutani, B. Lall, and M. Agrawal, “Optical Wireless Communications: Research Challenges for MAC Layer,” IEEE Access, vol. 10, pp. 126969–126989, 2022, doi: 10.1109/ACCESS.2022.3225913.
  5. Z. Wei, Z. Wang, J. Zhang, Q. Li, J. Zhang, and H. Y. Fu, “Evolution of optical wireless communication for B5G/6G,” Prog Quantum Electron, vol. 83, p. 100398, May 2022, doi: 10.1016/j.pquantelec.2022.100398.
  6. A. Hamza and T. Tripp, “Optical Wireless Communication for the Internet of Things: Advances, Challenges, and Opportunities,” Jul. 18, 2020. doi: 10.36227/techrxiv.12659789.v1.
  7. C. Ofori, J. Cudjoe Attachie, and F. Obeng-Adjapong, “A GSM-Based Fault Detection on Overhead Distribution Lines,” Jurnal Nasional Teknik Elektro, vol. 12, no. 2, pp. 70–79, Jul. 2023, doi: 10.25077/jnte.v12n2.986.2023.
  8. A. Krishnamoorthy et al., “Optical Wireless Communications: Enabling the Next-Generation Network of Networks,” IEEE Vehicular Technology Magazine, vol. 20, no. 2, pp. 20–39, Jun. 2025, doi: 10.1109/MVT.2025.3555366.
  9. A. A. Dowhuszko, I. Tavakkolnia, and P. D. Diamantoulakis, “Current Status and Possible Directions to Gain Momentum in the Massive Adoption of OWC,” in Final White Paper, NEWFOCUS CA19111 COST Action: European network on future generation optical wireless communication technologies, 2024.
  10. S. A. H. Mohsan, A. Mazinani, H. Bin Sadiq, and H. Amjad, “A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions,” Opt Quantum Electron, vol. 54, no. 3, p. 187, Mar. 2022, doi: 10.1007/s11082-021-03442-5.
  11. A. Ren et al., “Emerging light-emitting diodes for next-generation data communications,” Nat Electron, vol. 4, no. 8, pp. 559–572, Aug. 2021, doi: 10.1038/s41928-021-00624-7.
  12. R. Wan, L. Wang, J. Huang, X. Yi, H.-C. Kuo, and J. Li, “Improving the Modulation Bandwidth of GaN‐Based Light‐Emitting Diodes for High‐Speed Visible Light Communication: Countermeasures and Challenges,” Adv Photonics Res, vol. 2, no. 12, p. 2100093, Dec. 2021, doi: 10.1002/adpr.202100093.
  13. C. Ofori, I. Oladeji, and R. Zamora, “A Fuzzy-based Technique for Series and Shunt FACTS Placement in a Distribution System,” in 2022 IEEE International Power and Renewable Energy Conference (IPRECON), IEEE, Dec. 2022, pp. 1–6. doi: 10.1109/IPRECON55716.2022.10059554.
  14. T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd Edition. Cambridge: Cambridge University Press, 2024.
  15. S. Saranya, B. Ragavi, L. Pavithra, S. Susheel, M. Srivarsha, and V. Vishal, “Audio Transmission using Visible Light Communication and Li-Fi Technology,” in 2021 6th International Conference on Inventive Computation Technologies (ICICT), IEEE, Jan. 2021, pp. 19–24. doi: 10.1109/ICICT50816.2021.9358638.
  16. B. Arhin, S. Chhaya, and H. Cha, “Cable Impedance Measurement and Verification Method,” The transactions of The Korean Institute of Electrical Engineers, vol. 72, no. 4, pp. 532–538, Apr. 2023, doi: 10.5370/KIEE.2023.72.4.532.
  17. I. C. Bruce, S. Armstrong, D. J. Bosnyak, and H. Tawfik, “Opportunities and Challenges for Bluetooth LE Audio Assistive Listening Systems,” in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Apr. 2025, pp. 1–5. doi: 10.1109/ICASSP49660.2025.10889430.
  18. X. Zhang, G. Klevering, X. Lei, Y. Hu, L. Xiao, and G.-H. Tu, “The Security in Optical Wireless Communication: A Survey,” ACM Comput Surv, vol. 55, no. 14s, pp. 1–36, Dec. 2023, doi: 10.1145/3594718.
  19. M. Toyoshima, “Recent Trends in Space Laser Communications for Small Satellites and Constellations,” Journal of Lightwave Technology, vol. 39, no. 3, pp. 693–699, Feb. 2021, doi: 10.1109/JLT.2020.3009505.
  20. P. A. Addo, L. Dwomoh, and C. Ofori, “Automatic Maintenance Alert System for Heavy Duty Haulage Machines,” Jurnal Nasional Teknik Elektro, vol. 11, no. 2, pp. 118–125, Jul. 2022, doi: 10.25077/jnte.v11n2.1002.2022.
  21. B. Arhin and H. Cha, “A New dv/dt Filter Design Method using the Voltage Reflection Theory,” in 2022 4th Global Power, Energy and Communication Conference (GPECOM), IEEE, Jun. 2022, pp. 107–111. doi: 10.1109/GPECOM55404.2022.9815657.
  22. C.-W. Chow et al., “Actively Controllable Beam Steering Optical Wireless Communication (OWC) Using Integrated Optical Phased Array (OPA),” Journal of Lightwave Technology, vol. 41, no. 4, pp. 1122–1128, Feb. 2023, doi: 10.1109/JLT.2022.3206843.
  23. N. Aravindan, S. Selvendran, and A. Sivanantha Raja, “Advancements in LED-based indoor visible light communication: A two-decade survey,” Heliyon, vol. 11, no. 9, p. e42866, Apr. 2025, doi: 10.1016/j.heliyon.2025.e42866.
  24. P. A. Loureiro, G. M. Fernandes, S. F. H. Correia, R. A. S. Ferreira, F. P. Guiomar, and P. P. Monteiro, “Multi-Gigabit RGB-VLC Transmission With Jointly Optimized Lighting and Communications,” Journal of Lightwave Technology, vol. 42, no. 13, pp. 4425–4432, Jul. 2024, doi: 10.1109/JLT.2024.3374871.
  25. A. S. A. Hassan, H. Y. Ahmed, H. A. Fadhil, M. Zeghid, A. Chehri, and S. A. Abd El-Mottaleb, “Implementation of Shared Laser–LED Sources in a Free Space Optics (FSO) Network under Environmental Impact,” Electronics (Basel), vol. 12, no. 4, p. 801, Feb. 2023, doi: 10.3390/electronics12040801.
  26. Y. Yang et al., “Positioning Using Wireless Networks: Applications, Recent Progress, and Future Challenges,” IEEE Journal on Selected Areas in Communications, vol. 42, no. 9, pp. 2149–2178, Sep. 2024, doi: 10.1109/JSAC.2024.3423629.
  27. A. A. Qidan et al., “Indoor Laser-Based Wireless Communications,” in Free Space Optics Technologies in B5G and 6G Era - Recent Advances, New Perspectives and Applications, IntechOpen, 2024. doi: 10.5772/intechopen.1004064.
  28. J. Zhang, “Optical Wireless Communication and Positioning Systems Applying Imaging Techniques,” Pennsylvania State University, 2020.
  29. O. Faruq, K. R. Shahriar Rahman, N. Jahan, S. Rokoni, and M. Rabeya, “Li-Fi technology-based long-range FSO data transmit system evaluation,” Sustainable Engineering and Innovation, vol. 5, no. 1, pp. 85–98, Jun. 2023, doi: 10.37868/sei.v5i1.id192.
  30. G. Meghana, K. B. Nishu, H. Soujanya, and S. Manasa, “FM Transmitter using Proteus 8,” in International Conference on VLSI, Communications and Computer Communication, Advances in Intelligent Systems and Technologies, J. Jenitta and L. Swetha Rani, Eds., AnaPub Publications, Dec. 2022, pp. 138–141. doi: 10.53759/aist/978-9914-9946-1-2_26.
  31. L. Dwomoh, P. Addo, E. Osei-Kwame, I. Arkorful, and I. Ampem, “Design and Implementation of a Power Dispatch Controller for Optimal Energy Management in a Grid-Connected System,” Journal of Power, Energy, and Control, vol. 2, no. 1, pp. 55–66, May 2025, doi: 10.62777/pec.v2i1.49.
  32. E. Osei-Kwame, Y. Sam-Okyere, and L. Dwomoh, “Automatic Switching System for Submersible Motor Pump: Case Study of a Cocoa Processing Company in Ghana,” Journal of Power, Energy, and Control, vol. 2, no. 1, pp. 27–42, Apr. 2025, doi: 10.62777/pec.v2i1.50.
  33. B. Arhin, D. Kim, and H. Cha, “A dv/dt Filter Design Based on the Voltage Reflection Theory at SiC Converter,” in 2023 IEEE International Future Energy Electronics Conference (IFEEC), IEEE, Nov. 2023, pp. 469–472. doi: 10.1109/IFEEC58486.2023.10458620.