Solidification Process Investigation of LiCl Salt as PCM with Temperature-Dependent Density and Viscosity by Enthalpy Porosity Simulation Model

Main Article Content

Nur Syah Ibrahim
Alief Avicenna Luthfie

Abstract

An enthalpy porosity simulation model is widely used to simulate the solidification process of a Phase Change Material (PCM) with constant density and viscosity. Consequently, numerical inaccuracy may arise in the investigation of the solidification process. Therefore, this study investigates the solidification of lithium chloride (LiCl) as a PCM, incorporating temperature-dependent density and viscosity in the enthalpy porosity model. Furthermore, the computational domain is represented by a concentric pipe, with the LiCl salt assumed to be fully filled within the annulus. The boundary conditions are adiabatic on the outer radius and constant temperature on the inner radius, representing the temperature of the Heat Transfer Fluid (HTF). The simulation results show that the solidification process with temperature-dependent density and viscosity required a total time of 2360 s to complete the solidification process. In addition, the solidification rate is decreased at the beginning of the solidification process and then increased before being decreased at the end of the solidification process. Furthermore, a comparison is conducted with constant density and viscosity. The comparison result shows that the solidification time of temperature-dependent density and viscosity is shorter than the solidification process time of constant density and viscosity with a deviation of 8.5%, indicating the importance of using the temperature-dependent density and viscosity to investigate the solidification time. Conversely, the solidification rate shows a similar tendency, indicating the insignificant effect of using the temperature-dependent density and viscosity to investigate the solidification rate.

Article Details

How to Cite
[1]
“Solidification Process Investigation of LiCl Salt as PCM with Temperature-Dependent Density and Viscosity by Enthalpy Porosity Simulation Model”, PEC, vol. 2, no. 1, pp. 43–54, Apr. 2025, doi: 10.62777/pec.v2i1.42.
Section
Articles

How to Cite

[1]
“Solidification Process Investigation of LiCl Salt as PCM with Temperature-Dependent Density and Viscosity by Enthalpy Porosity Simulation Model”, PEC, vol. 2, no. 1, pp. 43–54, Apr. 2025, doi: 10.62777/pec.v2i1.42.

References

N. Boerema, G. Morrison, R. Taylor, and G. Rosengarten, “High temperature solar thermal central-receiver billboard design,” Solar Energy, vol. 97, pp. 356–368, Nov. 2013. https://doi.org/10.1016/j.solener.2013.09.008. DOI: https://doi.org/10.1016/j.solener.2013.09.008

T. M. Pavlović, I. S. Radonjić, D. D. Milosavljević, and L. S. Pantić, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3891–3902, Aug. 2012. https://doi.org/10.1016/j.rser.2012.03.042. DOI: https://doi.org/10.1016/j.rser.2012.03.042

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 466–481, Jun. 2013. https://doi.org/10.1016/j.rser.2013.01.032. DOI: https://doi.org/10.1016/j.rser.2013.01.032

S. Zhang, Y. Jin, and Y. Yan, “Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism,” J Mol Liq, vol. 346, p. 117058, Jan. 2022. https://doi.org/10.1016/j.molliq.2021.117058. DOI: https://doi.org/10.1016/j.molliq.2021.117058

S. Zhang and Y. Yan, “Melting and thermodynamic properties of nanoscale binary chloride salt as high-temperature energy storage material,” Case Studies in Thermal Engineering, vol. 25, p. 100973, Jun. 2021. https://doi.org/10.1016/j.csite.2021.100973. DOI: https://doi.org/10.1016/j.csite.2021.100973

D. Han, B. Guene Lougou, Y. Xu, Y. Shuai, and X. Huang, “Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage,” Appl Energy, vol. 264, p. 114674, Apr. 2020. https://doi.org/10.1016/j.apenergy.2020.114674. DOI: https://doi.org/10.1016/j.apenergy.2020.114674

Vikas, A. Yadav, and S. K. Soni, “Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent),” International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 5, pp. 3289–3294, May 2017.

H. A. Adine and H. El Qarnia, “Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials,” Appl Math Model, vol. 33, no. 4, pp. 2132–2144, Apr. 2009. https://doi.org/10.1016/j.apm.2008.05.016. DOI: https://doi.org/10.1016/j.apm.2008.05.016

S. Arena, G. Cau, and C. Palomba, “CFD Simulation of Melting and Solidification of PCM in Thermal Energy Storage Systems of Different Geometry,” J Phys Conf Ser, vol. 655, p. 012051, Nov. 2015. https://doi.org/10.1088/1742-6596/655/1/012051. DOI: https://doi.org/10.1088/1742-6596/655/1/012051

M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cabeza, “State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 56–72, Jan. 2010. https://doi.org/10.1016/j.rser.2009.07.036. DOI: https://doi.org/10.1016/j.rser.2009.07.036

S. Zhang and Y. Yan, “Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit,” Renew Energy, vol. 198, pp. 1210–1223, Oct. 2022. https://doi.org/10.1016/j.renene.2022.08.124. DOI: https://doi.org/10.1016/j.renene.2022.08.124

F. Fornarelli et al., “Numerical simulation of a complete charging-discharging phase of a shell and tube thermal energy storage with phase change material,” Energy Procedia, vol. 126, pp. 501–508, Sep. 2017. https://doi.org/10.1016/j.egypro.2017.08.220. DOI: https://doi.org/10.1016/j.egypro.2017.08.220

K. Hirai, S. Bellan, K. Matsubara, T. Kodama, N. Gokon, and H. S. Cho, “Numerical analysis on solidification process of PCM in triplex-tube thermal energy storage system,” in SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, Daegu: AIP, 2020, p. 190018. https://doi.org/10.1063/5.0028873. DOI: https://doi.org/10.1063/5.0028873

D. V. Alexandrov, “Nucleation and growth of crystals at the intermediate stage of phase transformations in binary melts,” Philos Mag Lett, vol. 94, no. 12, pp. 786–793, Dec. 2014. https://doi.org/10.1080/09500839.2014.977975. DOI: https://doi.org/10.1080/09500839.2014.977975

K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, “Melting and solidification behaviour of phase change materials with cyclic heating and cooling,” J Energy Storage, vol. 15, pp. 274–282, Feb. 2018. https://doi.org/10.1016/j.est.2017.12.005. DOI: https://doi.org/10.1016/j.est.2017.12.005

A. Shahsavar, A. H. Majidzadeh, R. B. Mahani, and P. Talebizadehsardari, “Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger,” Renew Energy, vol. 165, pp. 52–72, Mar. 2021. https://doi.org/10.1016/j.renene.2020.11.074. DOI: https://doi.org/10.1016/j.renene.2020.11.074

W. D. Bennon and F. P. Incropera, “A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation,” Int J Heat Mass Transf, vol. 30, no. 10, pp. 2161–2170, Oct. 1987. https://doi.org/10.1016/0017-9310(87)90094-9. DOI: https://doi.org/10.1016/0017-9310(87)90094-9

F. Li, A. Almarashi, M. Jafaryar, M. R. Hajizadeh, and Y.-M. Chu, “Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins,” Powder Technol, vol. 381, pp. 551–560, Mar. 2021. https://doi.org/10.1016/j.powtec.2020.12.026. DOI: https://doi.org/10.1016/j.powtec.2020.12.026

G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, “Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data,” Washington D.C., NSRDS-NBS 15, 1968. DOI: https://doi.org/10.6028/NBS.NSRDS.15

M. Kirincic, A. Trp, and K. Lenic, “Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models,” Renew Energy, vol. 179, pp. 1329–1344, Dec. 2021. https://doi.org/10.1016/j.renene.2021.07.083. DOI: https://doi.org/10.1016/j.renene.2021.07.083

V. Shivam, S. Kar, G. K. Mandal, N. K. Mukhopadhyay, and V. C. Srivastava, “Microstructural design opportunities and phase stability in the spray-formed AlCoCr0.75Cu0.5FeNi high entropy alloy,” Journal of Alloys and Metallurgical Systems, vol. 8, p. 100138, Dec. 2024. https://doi.org/10.1016/j.jalmes.2024.100138. DOI: https://doi.org/10.1016/j.jalmes.2024.100138

M. M. Hasan and A. A. Luthfie, “Melting Process Investigation of KCl Salt as a PCM by Enthalpy-Porosity Simulation Model with Temperature-dependent Physical Properties,” Journal of Power, Energy, and Control, vol. 1, no. 2, pp. 58–67, Sep. 2024. https://doi.org/10.62777/pec.v1i2.22. DOI: https://doi.org/10.62777/pec.v1i2.22

D. W. Green and M. Z. Southard, Perry’s Chemical Engineers’ Handbook, 9th Edition. New York: McGraw-Hill Education, 2019.

R. G. M. van der Sman, I. A. F. van den Hoek, and Y. Zhao, “Interaction of milk fat solidification and cheese cooling,” J Food Eng, vol. 395, p. 112531, Jul. 2025. https://doi.org/10.1016/j.jfoodeng.2025.112531. DOI: https://doi.org/10.1016/j.jfoodeng.2025.112531