Vol. 2 No. 1 (2025)
Articles

IoT-Enabled Solar-Powered Pest Control for Rice Agriculture: Monitoring and Efficiency of Light-Based Traps

Novita Asma Ilahi
Politeknik Negeri Cilacap, Indonesia
Afrizal Abdi Musyafiq
Politeknik Negeri Cilacap, Indonesia
M. Fakhruriza Pradana
University of Duisburg-Essen, Germany
Erna Alimudin
Politeknik Negeri Cilacap, Indonesia
Ilma Fadlilah
Politeknik Negeri Cilacap, Indonesia
Kulaiah Syifaul Husna
Politeknik Negeri Cilacap, Indonesia
Erliza Septia Nagara
Institut Bakti Nusantara, Indonesia
Agus Santoso
Politeknik Negeri Cilacap, Indonesia

Published 16-04-2025

Keywords

  • Internet of Things,
  • Pest control,
  • Solar Energy,
  • Agriculture

How to Cite

[1]
N. A. Ilahi, “IoT-Enabled Solar-Powered Pest Control for Rice Agriculture: Monitoring and Efficiency of Light-Based Traps”, PEC, vol. 2, no. 1, pp. 14–26, Apr. 2025, doi: 10.62777/pec.v2i1.41.

Abstract

Rice is a staple food in Indonesia and globally, but its production is threatened by pests such as the brown planthopper. Conventional pest control methods, including pesticides and traditional techniques, often prove ineffective and have negative environmental impacts. Light traps have been explored as an alternative due to the brown planthopper's phototactic behavior, yet existing designs lack efficiency in capturing pests. This study presents an IoT-based solar-powered pest control system that integrates light as an attractant and an electric trap for effective pest elimination. The system features real-time monitoring of voltage, current, and light intensity using an LCD display, powered by a 35 Wp solar panel and managed through an Arduino Uno microcontroller. Experimental results show that brown planthoppers are most attracted to an LED light with an intensity of 780 lux, operating at 11.5 V and 0.97 A. The system consumes 112.52 Wh, with a full battery charge requiring approximately 6 hours and 7 minutes. These findings highlight the potential of a sustainable, energy-efficient solution for pest control in rice agriculture. 

References

  1. A. P. Siregar et al., “The Trend of Agricultural Sector Resilience in Indonesia During 2008-2020,” Journal of Agricultural Sciences – Sri Lanka, vol. 19, no. 2, pp. 336–357, May 2024. https://doi.org/10.4038/jas.v19i2.10154. DOI: https://doi.org/10.4038/jas.v19i2.10154
  2. Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia Tahun 2021 (Angka Tetap),” Berita Resmi Statistik No. 21/03/Th. XXV. Accessed: Jun. 29, 2022. [Online]. Available: https://www.bps.go.id/id/pressrelease/2022/03/01/1909/produksi-padi-tahun-2021-turun-0-43-persen--angka-tetap-.html
  3. L. Listihani, P. E. P. Ariati, ‪I G. A. D. Yuniti, and ‪Dewa G. W. Selangga, “The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia,” Biodiversitas, vol. 23, no. 9, pp. 4696–4704, Sep. 2022. https://doi.org/10.13057/biodiv/d230936.‬‬‬‬ DOI: https://doi.org/10.13057/biodiv/d230936
  4. R. Yusianto, “Alat Pengendali Hama Wereng Coklat dengan Baling-baling Mekanik dan Corong Penyedot,” in Seminar Nasional Teknologi Informasi & Komunikasi Terapan (Semantik), Semarang, Nov. 2014, pp. 225–227.
  5. H. A. Lham, R. Syahta, F. Anggara, and J. Jamaluddin, “Alat Perangkap Hama Serangga Padi Sawah Menggunakan Cahaya dari Tenaga Surya,” Journal of Applied Agricultural Science and Technology, vol. 2, no. 1, pp. 11–19, Feb. 2018. https://doi.org/10.32530/jaast.v2i1.13. DOI: https://doi.org/10.32530/jaast.v2i1.13
  6. S. Sudarmono, J. Waluyo, and W. Wilopo, “Perancangan Pembangkit Listrik Tenaga Surya (PLTS) Pembasmi Serangga pada Tanaman Bawang Merah di Kabupaten Brebes,” Journal of Approriate Technology for Community Services, vol. 1, no. 1, pp. 35–39, Jan. 2020. https://doi.org/10.20885/jattec.vol1.iss1.art6. DOI: https://doi.org/10.20885/jattec.vol1.iss1.art6
  7. A. M. Haval and F. Rahman, “Application of machine learning techniques and the Internet of Things for smart, sustainable agriculture,” BIO Web Conf, vol. 82, p. 05021, Jan. 2024. https://doi.org/10.1051/bioconf/20248205021. DOI: https://doi.org/10.1051/bioconf/20248205021
  8. I. G. S. Widharma, K. Sumadi, and A. A. M. D. Anggreni, “Study on the implementation of the Internet of Things in the sustainable agricultural revolution from upstream to downstream,” Digital Theory, Culture & Society, vol. 2, no. 2, pp. 113–120, Dec. 2024. https://doi.org/10.61126/dtcs.v2i2.48. DOI: https://doi.org/10.61126/dtcs.v2i2.48
  9. S. Pullo, R. Pareschi, V. Piantadosi, F. Salzano, and R. Carlini, “Integrating IOTA’s Tangle with the Internet of Things for Sustainable Agriculture: A Proof-of-Concept Study on Rice Cultivation,” Informatics, vol. 11, no. 1, p. 3, Dec. 2023. https://doi.org/10.3390/informatics11010003. DOI: https://doi.org/10.3390/informatics11010003
  10. Millenia Dzikra Az Zahra, Hermanu Triwidodo, and Widodo, “Institutionalization of integrated pest management in the food estate development area, Sungai Mandau Subdistrict, Siak Regency, Riau,” International Journal of Science and Research Archive, vol. 11, no. 1, pp. 222–230, Jan. 2024. https://doi.org/10.30574/ijsra.2024.11.1.0012. DOI: https://doi.org/10.30574/ijsra.2024.11.1.0012
  11. A. Dhakal and S. Poudel, “Integrated Pest Management (IPM) and Its Application in Rice – A Review,” Reviews In Food And Agriculture, vol. 1, no. 2, pp. 54–58, Oct. 2020. https://doi.org/10.26480/rfna.02.2020.54.58. DOI: https://doi.org/10.26480/rfna.02.2020.54.58
  12. E. C. Scutarașu and L. C. Trincă, “Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods,” Foods, vol. 12, no. 18, p. 3340, Sep. 2023. https://doi.org/10.3390/foods12183340. DOI: https://doi.org/10.3390/foods12183340
  13. P. Kumar, S. Malik, and K. K. Dubey, “A Review on the Use of Nanomaterials in Agriculture: Benefits and Associated Health Risks,” Current Nanomaterials, vol. 8, no. 1, pp. 44–57, Apr. 2023. https://doi.org/10.2174/2405461507666220106114229. DOI: https://doi.org/10.2174/2405461507666220106114229
  14. M. Anusha et al., “Exploring the Role of IoT in Transforming Agriculture: Current Applications and Future Prospects,” Archives of Current Research International, vol. 25, no. 4, pp. 85–105, Mar. 2025. https://doi.org/10.9734/acri/2025/v25i41139. DOI: https://doi.org/10.9734/acri/2025/v25i41139
  15. P. Chaurasiya et al., “From tradition to technology: The impact of ai and IoT on agronomy practices in India and internationally,” International Journal of Research in Agronomy, vol. 8, no. 3S, pp. 184–193, Mar. 2025. https://doi.org/10.33545/2618060X.2025.v8.i3Sc.2683. DOI: https://doi.org/10.33545/2618060X.2025.v8.i3Sc.2683
  16. K. Madduri, S. Hiremath, L. J, D. S. Chiniwar, and S. M H, “Environment-friendly experimental solar-powered UV light pest trapping mechanism for open agricultural fields,” Environ Res Commun, vol. 7, no. 3, p. 035002, Mar. 2025. https://doi.org/10.1088/2515-7620/adb8a5. DOI: https://doi.org/10.1088/2515-7620/adb8a5
  17. A. Khan et al., “Insect Phototaxis Mechanisms Innovations in Pest Control Strategies and Applications,” Uttar Pradesh Journal of Zoology, vol. 45, no. 20, pp. 169–180, Oct. 2024. https://doi.org/10.56557/upjoz/2024/v45i204574. DOI: https://doi.org/10.56557/upjoz/2024/v45i204574
  18. R. Cagorol and A. Sabusap, “Development and Evaluation of a High-Efficacy Solar-Powered Light Trap for Rice Black Bug (Scotinophara Coartata) Management,” Recoletos Multidisciplinary Research Journal, vol. 12, no. 1, pp. 215–223, Jun. 2024. https://doi.org/10.32871/rmrj2412.01.16. DOI: https://doi.org/10.32871/rmrj2412.01.16
  19. D. Dobrilovic et al., “Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT,” Sustainability, vol. 15, no. 9, p. 7440, Apr. 2023. https://doi.org/10.3390/su15097440. DOI: https://doi.org/10.3390/su15097440
  20. R. N. Rohmah, Y. Oktafianto, N. Nurokhim, H. Supriyono, and A. Supardi, “Pest Control System on Agricultural Land using IoT Electronic Controller,” Journal of Applied Engineering and Technological Science (JAETS), vol. 5, no. 2, pp. 1011–1019, Jun. 2024. https://doi.org/10.37385/jaets.v5i2.4592. DOI: https://doi.org/10.37385/jaets.v5i2.4592