Vol. 1 No. 1 (2024)
Articles

Examining Power Quality Challenges in Photovoltaic-Grid Integration: A Critical Review

Zakariya Sandi
The University of Edinburgh, United Kingdom; PT. PLN (Persero), Indonesia
PEC 1(1)

Published 28-04-2024

Keywords

  • photovoltaics,
  • power quality,
  • grid-connected

How to Cite

[1]
Z. Sandi, “Examining Power Quality Challenges in Photovoltaic-Grid Integration: A Critical Review”, PEC, vol. 1, no. 1, pp. 12–23, Apr. 2024, doi: 10.62777/pec.v1i1.4.

Abstract

With the massive growth of photovoltaic (PV) installations worldwide, the impact of integration between PV and the grid is becoming a serious issue and requires immediate attention. This is due to the intermittent power that the PV itself generates. The quality of the power can affect the stability of the system, the protection equipment, and the energy efficiency, which imposes a financial issue. This literature review will present the most frequently encountered problems when PV integrates with the grid, namely power quality issues, particularly on the distribution network. Problem-solving will also be presented as a reference for future PV development. It discusses several ways to handle power quality problems, depending on the factors influencing power quality. One of the proven ways is to use a modern inverter equipped with features that suit the system's needs. However, the discussion in this paper is limited to the issues of power quality and voltage generated by PV integrated into the grid. Future studies can discuss other technical issues, such as protection, feeder losses, and other problems that may arise in the future.

References

  1. A. Colmenar-Santos, A.-R. Linares-Mena, E.-L. Molina-Ibáñez, E. Rosales-Asensio, and D. Borge-Diez, “Technical challenges for the optimum penetration of grid-connected photovoltaic systems: Spain as a case study,” Renew Energy, vol. 145, pp. 2296–2305, Jan. 2020, https://doi.org/10.1016/j.renene.2019.07.118. DOI: https://doi.org/10.1016/j.renene.2019.07.118
  2. P. Chaudhary and M. Rizwan, “Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system,” Renew Energy, vol. 118, pp. 928–946, Apr. 2018, https://doi.org/10.1016/j.renene.2017.10.113. DOI: https://doi.org/10.1016/j.renene.2017.10.113
  3. IRENA (International Renewable Energy Agency), “Renewable Capacity Statistics 2022,” Abu Dhabi, UAE, 2022. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf
  4. O. Gandhi, D. S. Kumar, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration,” Solar Energy, vol. 210, pp. 181–201, Nov. 2020, https://doi.org/10.1016/j.solener.2020.06.097. DOI: https://doi.org/10.1016/j.solener.2020.06.097
  5. M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power Quality Analysis of Grid-Connected Photovoltaic Systems in Distribution Networks,” Przegląd Elektrotechniczny, vol. 2a, pp. 208–213, 2013. DOI: https://doi.org/10.1109/SCOReD.2012.6518600
  6. T. Olowu, A. Sundararajan, M. Moghaddami, and A. Sarwat, “Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey,” Energies, vol. 11, no. 7, p. 1782, Jul. 2018, https://doi.org/10.3390/en11071782. DOI: https://doi.org/10.3390/en11071782
  7. H. H. H. de Silva, D. K. J. S. Jayamaha, and N. W. A. Lidula, “Power Quality Issues Due to High Penetration of Rooftop Solar PV in Low Voltage Distribution Networks: A Case Study,” in 2019 14th Conference on Industrial and Information Systems (ICIIS), IEEE, Dec. 2019, pp. 395–400. https://doi.org/10.1109/ICIIS47346.2019.9063322. DOI: https://doi.org/10.1109/ICIIS47346.2019.9063322
  8. M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power Quality Impact of Renewable Energy based Generators and Electric Vehicles on Distribution Systems,” Procedia Technology, vol. 11, pp. 11–17, 2013, https://doi.org/10.1016/j.protcy.2013.12.156. DOI: https://doi.org/10.1016/j.protcy.2013.12.156
  9. A. F. Abdul Kadir, T. Khatib, and W. Elmenreich, “Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges,” International Journal of Photoenergy, vol. 2014, pp. 1–7, 2014, https://doi.org/10.1155/2014/321826. DOI: https://doi.org/10.1155/2014/321826
  10. R. C. N. Pilawa-Podgurski and D. J. Perreault, “Sub-module integrated distributed maximum power point tracking for solar photovoltaic applications,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 2012, pp. 4776–4783. https://doi.org/10.1109/ECCE.2012.6342170. DOI: https://doi.org/10.1109/ECCE.2012.6342170
  11. P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, “Differential Power Processing for Increased Energy Production and Reliability of Photovoltaic Systems,” IEEE Trans Power Electron, vol. 28, no. 6, pp. 2968–2979, Jun. 2013, https://doi.org/10.1109/TPEL.2012.2211082. DOI: https://doi.org/10.1109/TPEL.2012.2211082
  12. C. Olalla, C. Deline, D. Clement, Y. Levron, M. Rodriguez, and D. Maksimovic, “Performance of Power-Limited Differential Power Processing Architectures in Mismatched PV Systems,” IEEE Trans Power Electron, vol. 30, no. 2, pp. 618–631, Feb. 2015, https://doi.org/10.1109/TPEL.2014.2312980. DOI: https://doi.org/10.1109/TPEL.2014.2312980
  13. C. Olalla, D. Clement, M. Rodriguez, and D. Maksimovic, “Architectures and Control of Submodule Integrated DC–DC Converters for Photovoltaic Applications,” IEEE Trans Power Electron, vol. 28, no. 6, pp. 2980–2997, Jun. 2013, https://doi.org/10.1109/TPEL.2012.2219073. DOI: https://doi.org/10.1109/TPEL.2012.2219073
  14. C. Deline and S. MacAlpine, “Use conditions and efficiency measurements of DC power optimizers for photovoltaic systems,” in 2013 IEEE Energy Conversion Congress and Exposition, IEEE, Sep. 2013, pp. 4801–4807. https://doi.org/10.1109/ECCE.2013.6647346. DOI: https://doi.org/10.1109/ECCE.2013.6647346
  15. D. Shmilovitz and Y. Levron, “Distributed Maximum Power Point Tracking in Photovoltaic Systems—Emerging Architectures and Control Methods,” Automatika, vol. 53, no. 2, pp. 142–155, Jan. 2012, https://doi.org/10.7305/automatika.53-2.185. DOI: https://doi.org/10.7305/automatika.53-2.185
  16. D. Sirigiri, N. Das, and R. C. Bansal, “Power Quality Issue and Mitigation Technique at High PV Penetration in Electricity Grid,” in 2021 31st Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2021, pp. 1–6. https://doi.org/10.1109/AUPEC52110.2021.9597821. DOI: https://doi.org/10.1109/AUPEC52110.2021.9597821
  17. R. K. Beniwal, M. K. Saini, A. Nayyar, B. Qureshi, and A. Aggarwal, “A Critical Analysis of Methodologies for Detection and Classification of Power Quality Events in Smart Grid,” IEEE Access, vol. 9, pp. 83507–83534, 2021, https://doi.org/10.1109/ACCESS.2021.3087016. DOI: https://doi.org/10.1109/ACCESS.2021.3087016
  18. IEEE, “519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE. pp. 1–29, 2014.
  19. S. V. S. Kumary, V. A. A. M. T. Oo, G. M. Shafiullah, and A. Stojcevski, “Modelling and power quality analysis of a grid-connected solar PV system,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2014, pp. 1–6. https://doi.org/10.1109/AUPEC.2014.6966605. DOI: https://doi.org/10.1109/AUPEC.2014.6966605
  20. H. Ibrahem, D. M. Yehia, and A. M. Azmy, “Power Quality Investigation of Distribution Networks with High Penetration of Solar Energy,” in 2019 21st International Middle East Power Systems Conference (MEPCON), IEEE, Dec. 2019, pp. 1193–1198. https://doi.org/10.1109/MEPCON47431.2019.9008226. DOI: https://doi.org/10.1109/MEPCON47431.2019.9008226
  21. A. D. Rodriguez, F. M. Fuentes, and A. J. Matta, “Comparative analysis between voltage unbalance definitions,” in 2015 Workshop on Engineering Applications - International Congress on Engineering (WEA), IEEE, Oct. 2015, pp. 1–7. https://doi.org/10.1109/WEA.2015.7370122. DOI: https://doi.org/10.1109/WEA.2015.7370122
  22. K. Girigoudar, D. K. Molzahn, and L. A. Roald, “On The Relationships Among Different Voltage Unbalance Definitions,” in 2019 North American Power Symposium (NAPS), IEEE, Oct. 2019, pp. 1–6. https://doi.org/10.1109/NAPS46351.2019.9000231. DOI: https://doi.org/10.1109/NAPS46351.2019.9000231
  23. B. Patel, N. Das, and S. Islam, “Mitigation of Power Quality Issues with Solar PV Penetration into LV/MV Distribution System,” in 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE, Dec. 2021, pp. 1–5. https://doi.org/10.1109/ISGTAsia49270.2021.9715706. DOI: https://doi.org/10.1109/ISGTAsia49270.2021.9715706
  24. M. Ding, Z. Xu, W. Wang, X. Wang, Y. Song, and D. Chen, “A review on China׳s large-scale PV integration: Progress, challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 639–652, Jan. 2016, https://doi.org/10.1016/j.rser.2015.09.009. DOI: https://doi.org/10.1016/j.rser.2015.09.009
  25. L. Xiong, M. Nour, and M. Shahin, “Harmonic analysis of high penetration level of Photovoltaic generation in distribution network and solution studies,” in 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, Apr. 2019, pp. 1–5. https://doi.org/10.1109/ICMSAO.2019.8880387. DOI: https://doi.org/10.1109/ICMSAO.2019.8880387
  26. IEEE, “1453-2015 - IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems,” IEEE. pp. 1–74, 2015.
  27. D. Sampath Kumar, O. Gandhi, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part II: Potential solutions and the way forward,” Solar Energy, vol. 210, pp. 202–221, Nov. 2020, https://doi.org/10.1016/j.solener.2020.08.047. DOI: https://doi.org/10.1016/j.solener.2020.08.047
  28. Md. A. Rahman, Md. R. Islam, A. M. Mahfuz-Ur-Rahman, K. M. Muttaqi, and D. Sutanto, “Investigation of the Effects of DC Current Injected by Transformer-Less PV Inverters on Distribution Transformers,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–4, Mar. 2019, https://doi.org/10.1109/TASC.2019.2895580. DOI: https://doi.org/10.1109/TASC.2019.2895580
  29. J. Bank, B. Mather, J. Keller, and M. Coddington, “High Penetration Photovoltaic Case Study Report,” Colorado, USA, NREL/TP-5500-54742, Jan. 2013. DOI: https://doi.org/10.2172/1062441
  30. J. von Appen, M. Braun, T. Stetz, K. Diwold, and D. Geibel, “Time in the Sun: The Challenge of High PV Penetration in the German Electric Grid,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 55–64, Mar. 2013, https://doi.org/10.1109/MPE.2012.2234407. DOI: https://doi.org/10.1109/MPE.2012.2234407
  31. B. Bletterie and M. Heidenreich, “Impact of large photovoltaic penetration on the quality of supply. A case study at a photovoltaic noise barrier in Austria; Untersuchung der Spannungsqualitaet in Netzen mit hohem PV-Anteil. Fallstudie der solaren Laermschutzwand Gleisdorf (Steiermark, Oesterreich),” in Symposium ueber photovoltaische Solarenergie, Bad Staffelstein, Germany, Mar. 2004, pp. 264–269.
  32. A. Anzalchi, A. Sundararajan, A. Moghadasi, and A. Sarwat, “High-Penetration Grid-Tied Photovoltaics: Analysis of Power Quality and Feeder Voltage Profile,” IEEE Industry Applications Magazine, vol. 25, no. 5, pp. 83–94, Sep. 2019, https://doi.org/10.1109/MIAS.2019.2923104. DOI: https://doi.org/10.1109/MIAS.2019.2923104