Examining Power Quality Challenges in Photovoltaic-Grid Integration: A Critical Review
Main Article Content
Abstract
With the massive growth of photovoltaic (PV) installations worldwide, the impact of integration between PV and the grid is becoming a serious issue and requires immediate attention. This is due to the intermittent power that the PV itself generates. The quality of the power can affect the stability of the system, the protection equipment, and the energy efficiency, which imposes a financial issue. This literature review will present the most frequently encountered problems when PV integrates with the grid, namely power quality issues, particularly on the distribution network. Problem-solving will also be presented as a reference for future PV development. It discusses several ways to handle power quality problems, depending on the factors influencing power quality. One of the proven ways is to use a modern inverter equipped with features that suit the system's needs. However, the discussion in this paper is limited to the issues of power quality and voltage generated by PV integrated into the grid. Future studies can discuss other technical issues, such as protection, feeder losses, and other problems that may arise in the future.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
A. Colmenar-Santos, A.-R. Linares-Mena, E.-L. Molina-Ibáñez, E. Rosales-Asensio, and D. Borge-Diez, “Technical challenges for the optimum penetration of grid-connected photovoltaic systems: Spain as a case study,” Renew Energy, vol. 145, pp. 2296–2305, Jan. 2020, https://doi.org/10.1016/j.renene.2019.07.118. DOI: https://doi.org/10.1016/j.renene.2019.07.118
P. Chaudhary and M. Rizwan, “Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system,” Renew Energy, vol. 118, pp. 928–946, Apr. 2018, https://doi.org/10.1016/j.renene.2017.10.113. DOI: https://doi.org/10.1016/j.renene.2017.10.113
IRENA (International Renewable Energy Agency), “Renewable Capacity Statistics 2022,” Abu Dhabi, UAE, 2022. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf
O. Gandhi, D. S. Kumar, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration,” Solar Energy, vol. 210, pp. 181–201, Nov. 2020, https://doi.org/10.1016/j.solener.2020.06.097. DOI: https://doi.org/10.1016/j.solener.2020.06.097
M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power Quality Analysis of Grid-Connected Photovoltaic Systems in Distribution Networks,” Przegląd Elektrotechniczny, vol. 2a, pp. 208–213, 2013. DOI: https://doi.org/10.1109/SCOReD.2012.6518600
T. Olowu, A. Sundararajan, M. Moghaddami, and A. Sarwat, “Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey,” Energies, vol. 11, no. 7, p. 1782, Jul. 2018, https://doi.org/10.3390/en11071782. DOI: https://doi.org/10.3390/en11071782
H. H. H. de Silva, D. K. J. S. Jayamaha, and N. W. A. Lidula, “Power Quality Issues Due to High Penetration of Rooftop Solar PV in Low Voltage Distribution Networks: A Case Study,” in 2019 14th Conference on Industrial and Information Systems (ICIIS), IEEE, Dec. 2019, pp. 395–400. https://doi.org/10.1109/ICIIS47346.2019.9063322. DOI: https://doi.org/10.1109/ICIIS47346.2019.9063322
M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power Quality Impact of Renewable Energy based Generators and Electric Vehicles on Distribution Systems,” Procedia Technology, vol. 11, pp. 11–17, 2013, https://doi.org/10.1016/j.protcy.2013.12.156. DOI: https://doi.org/10.1016/j.protcy.2013.12.156
A. F. Abdul Kadir, T. Khatib, and W. Elmenreich, “Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges,” International Journal of Photoenergy, vol. 2014, pp. 1–7, 2014, https://doi.org/10.1155/2014/321826. DOI: https://doi.org/10.1155/2014/321826
R. C. N. Pilawa-Podgurski and D. J. Perreault, “Sub-module integrated distributed maximum power point tracking for solar photovoltaic applications,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 2012, pp. 4776–4783. https://doi.org/10.1109/ECCE.2012.6342170. DOI: https://doi.org/10.1109/ECCE.2012.6342170
P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, “Differential Power Processing for Increased Energy Production and Reliability of Photovoltaic Systems,” IEEE Trans Power Electron, vol. 28, no. 6, pp. 2968–2979, Jun. 2013, https://doi.org/10.1109/TPEL.2012.2211082. DOI: https://doi.org/10.1109/TPEL.2012.2211082
C. Olalla, C. Deline, D. Clement, Y. Levron, M. Rodriguez, and D. Maksimovic, “Performance of Power-Limited Differential Power Processing Architectures in Mismatched PV Systems,” IEEE Trans Power Electron, vol. 30, no. 2, pp. 618–631, Feb. 2015, https://doi.org/10.1109/TPEL.2014.2312980. DOI: https://doi.org/10.1109/TPEL.2014.2312980
C. Olalla, D. Clement, M. Rodriguez, and D. Maksimovic, “Architectures and Control of Submodule Integrated DC–DC Converters for Photovoltaic Applications,” IEEE Trans Power Electron, vol. 28, no. 6, pp. 2980–2997, Jun. 2013, https://doi.org/10.1109/TPEL.2012.2219073. DOI: https://doi.org/10.1109/TPEL.2012.2219073
C. Deline and S. MacAlpine, “Use conditions and efficiency measurements of DC power optimizers for photovoltaic systems,” in 2013 IEEE Energy Conversion Congress and Exposition, IEEE, Sep. 2013, pp. 4801–4807. https://doi.org/10.1109/ECCE.2013.6647346. DOI: https://doi.org/10.1109/ECCE.2013.6647346
D. Shmilovitz and Y. Levron, “Distributed Maximum Power Point Tracking in Photovoltaic Systems—Emerging Architectures and Control Methods,” Automatika, vol. 53, no. 2, pp. 142–155, Jan. 2012, https://doi.org/10.7305/automatika.53-2.185. DOI: https://doi.org/10.7305/automatika.53-2.185
D. Sirigiri, N. Das, and R. C. Bansal, “Power Quality Issue and Mitigation Technique at High PV Penetration in Electricity Grid,” in 2021 31st Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2021, pp. 1–6. https://doi.org/10.1109/AUPEC52110.2021.9597821. DOI: https://doi.org/10.1109/AUPEC52110.2021.9597821
R. K. Beniwal, M. K. Saini, A. Nayyar, B. Qureshi, and A. Aggarwal, “A Critical Analysis of Methodologies for Detection and Classification of Power Quality Events in Smart Grid,” IEEE Access, vol. 9, pp. 83507–83534, 2021, https://doi.org/10.1109/ACCESS.2021.3087016. DOI: https://doi.org/10.1109/ACCESS.2021.3087016
IEEE, “519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE. pp. 1–29, 2014.
S. V. S. Kumary, V. A. A. M. T. Oo, G. M. Shafiullah, and A. Stojcevski, “Modelling and power quality analysis of a grid-connected solar PV system,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), IEEE, Sep. 2014, pp. 1–6. https://doi.org/10.1109/AUPEC.2014.6966605. DOI: https://doi.org/10.1109/AUPEC.2014.6966605
H. Ibrahem, D. M. Yehia, and A. M. Azmy, “Power Quality Investigation of Distribution Networks with High Penetration of Solar Energy,” in 2019 21st International Middle East Power Systems Conference (MEPCON), IEEE, Dec. 2019, pp. 1193–1198. https://doi.org/10.1109/MEPCON47431.2019.9008226. DOI: https://doi.org/10.1109/MEPCON47431.2019.9008226
A. D. Rodriguez, F. M. Fuentes, and A. J. Matta, “Comparative analysis between voltage unbalance definitions,” in 2015 Workshop on Engineering Applications - International Congress on Engineering (WEA), IEEE, Oct. 2015, pp. 1–7. https://doi.org/10.1109/WEA.2015.7370122. DOI: https://doi.org/10.1109/WEA.2015.7370122
K. Girigoudar, D. K. Molzahn, and L. A. Roald, “On The Relationships Among Different Voltage Unbalance Definitions,” in 2019 North American Power Symposium (NAPS), IEEE, Oct. 2019, pp. 1–6. https://doi.org/10.1109/NAPS46351.2019.9000231. DOI: https://doi.org/10.1109/NAPS46351.2019.9000231
B. Patel, N. Das, and S. Islam, “Mitigation of Power Quality Issues with Solar PV Penetration into LV/MV Distribution System,” in 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE, Dec. 2021, pp. 1–5. https://doi.org/10.1109/ISGTAsia49270.2021.9715706. DOI: https://doi.org/10.1109/ISGTAsia49270.2021.9715706
M. Ding, Z. Xu, W. Wang, X. Wang, Y. Song, and D. Chen, “A review on China׳s large-scale PV integration: Progress, challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 639–652, Jan. 2016, https://doi.org/10.1016/j.rser.2015.09.009. DOI: https://doi.org/10.1016/j.rser.2015.09.009
L. Xiong, M. Nour, and M. Shahin, “Harmonic analysis of high penetration level of Photovoltaic generation in distribution network and solution studies,” in 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, Apr. 2019, pp. 1–5. https://doi.org/10.1109/ICMSAO.2019.8880387. DOI: https://doi.org/10.1109/ICMSAO.2019.8880387
IEEE, “1453-2015 - IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems,” IEEE. pp. 1–74, 2015.
D. Sampath Kumar, O. Gandhi, C. D. Rodríguez-Gallegos, and D. Srinivasan, “Review of power system impacts at high PV penetration Part II: Potential solutions and the way forward,” Solar Energy, vol. 210, pp. 202–221, Nov. 2020, https://doi.org/10.1016/j.solener.2020.08.047. DOI: https://doi.org/10.1016/j.solener.2020.08.047
Md. A. Rahman, Md. R. Islam, A. M. Mahfuz-Ur-Rahman, K. M. Muttaqi, and D. Sutanto, “Investigation of the Effects of DC Current Injected by Transformer-Less PV Inverters on Distribution Transformers,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–4, Mar. 2019, https://doi.org/10.1109/TASC.2019.2895580. DOI: https://doi.org/10.1109/TASC.2019.2895580
J. Bank, B. Mather, J. Keller, and M. Coddington, “High Penetration Photovoltaic Case Study Report,” Colorado, USA, NREL/TP-5500-54742, Jan. 2013. DOI: https://doi.org/10.2172/1062441
J. von Appen, M. Braun, T. Stetz, K. Diwold, and D. Geibel, “Time in the Sun: The Challenge of High PV Penetration in the German Electric Grid,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 55–64, Mar. 2013, https://doi.org/10.1109/MPE.2012.2234407. DOI: https://doi.org/10.1109/MPE.2012.2234407
B. Bletterie and M. Heidenreich, “Impact of large photovoltaic penetration on the quality of supply. A case study at a photovoltaic noise barrier in Austria; Untersuchung der Spannungsqualitaet in Netzen mit hohem PV-Anteil. Fallstudie der solaren Laermschutzwand Gleisdorf (Steiermark, Oesterreich),” in Symposium ueber photovoltaische Solarenergie, Bad Staffelstein, Germany, Mar. 2004, pp. 264–269.
A. Anzalchi, A. Sundararajan, A. Moghadasi, and A. Sarwat, “High-Penetration Grid-Tied Photovoltaics: Analysis of Power Quality and Feeder Voltage Profile,” IEEE Industry Applications Magazine, vol. 25, no. 5, pp. 83–94, Sep. 2019, https://doi.org/10.1109/MIAS.2019.2923104. DOI: https://doi.org/10.1109/MIAS.2019.2923104