Optimising Agrivoltaic Systems: Identifying Suitable Solar Development Sites for Integrated Food and Energy Production
Main Article Content
Abstract
This study explores the integration of food and energy systems as a solution to address agricultural challenges in the dryland region of Gunungkidul Regency. Facing water scarcity issues, the region's abundant solar irradiation potential presents an opportunity for co-locating food and energy production, specifically through the implementation of an agrivoltaic system. Seven sub-districts had been designated in the local government regulations for solar energy development sites, including Gedangsari, Nglipar, Ngawen, Purwosari, Saptosari, Tanjungsari, and Tepus. Ten criteria and five constraints were established to assess their suitability for agrivoltaic systems. Utilising map overlay analysis and integrating GIS-MCDA with Fuzzy and AHP methodologies, three sub-districts—Semanu, Wonosari, and Tepus—emerged as the most suitable locations. Each sub-district boasts substantial total areas of 1,779.9 Ha, 1,325.5 Ha, and 1,147.21 Ha, respectively, with Tepus aligning with the local government's solar energy development plan. This comprehensive approach ensures that the selected locations meet both energy development goals and the potential for successful agrivoltaic implementation. In conclusion, this study demonstrates the feasibility of implementing food and energy combinations through an agrivoltaic system in Gunungkidul Regency, providing insights into suitable sub-districts and emphasising the importance of aligning regional energy plans with sustainable agricultural practices on arid land.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
A. Goetzberger and A. Zastrow, “On the Coexistence of Solar-Energy Conversion and Plant Cultivation,” International Journal of Solar Energy, vol. 1, no. 1, pp. 55–69, Jan. 1982, https://doi.org/10.1080/01425918208909875. DOI: https://doi.org/10.1080/01425918208909875
P. Jain, G. Raina, S. Sinha, P. Malik, and S. Mathur, “Agrovoltaics: Step towards sustainable energy-food combination,” Bioresour Technol Rep, vol. 15, p. 100766, Sep. 2021, https://doi.org/10.1016/J.BITEB.2021.100766. DOI: https://doi.org/10.1016/j.biteb.2021.100766
M. A. Al Mamun, P. Dargusch, D. Wadley, N. A. Zulkarnain, and A. A. Aziz, “A review of research on agrivoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 161, p. 112351, Jun. 2022, https://doi.org/10.1016/J.RSER.2022.112351. DOI: https://doi.org/10.1016/j.rser.2022.112351
D. Novitasari, Sarjiya, and R. Budiarto, “Integration Challenges of Climate-Energy-Water-Food Nexus in Indonesia’s Power Generation Sector,” Proceeding - 1st FORTEI-International Conference on Electrical Engineering, FORTEI-ICEE 2020, pp. 35–40, Sep. 2020, https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249906. DOI: https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249906
H. Dinesh and J. M. Pearce, “The potential of agrivoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 299–308, Feb. 2016, https://doi.org/10.1016/J.RSER.2015.10.024. DOI: https://doi.org/10.1016/j.rser.2015.10.024
A. S. Pascaris, C. Schelly, and J. M. Pearce, “A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics,” Agronomy 2020, Vol. 10, Page 1885, vol. 10, no. 12, p. 1885, Nov. 2020, https://doi.org/10.3390/AGRONOMY10121885. DOI: https://doi.org/10.3390/agronomy10121885
IAEA, “Integrated Assessment of Climate, Land, Energy and Water,” 2020. [Online]. Available: https://www-pub.iaea.org/MTCD/publications/PDF/PUB1910_web.pdf
M. Howells et al., “Integrated analysis of climate change, land-use, energy and water strategies,” Nature Climate Change, vol. 3, no. 7. pp. 621–626, Jun. 2013. https://doi.org/10.1038/nclimate1789. DOI: https://doi.org/10.1038/nclimate1789
S. Hermann et al., “Sustainable Energy for All - What does it mean for Water and Food Security : Seeking sustainable development CLEWS: Climate-change, Land-use, Energy and Water (CLEW) Strategies,” 2011, Accessed: Oct. 20, 2022. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-89156
C. Toledo, A. Scognamiglio, C. Toledo, and A. Scognamiglio, “Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns),” Sustainability 2021, Vol. 13, Page: 6871, vol. 13, no. 12, p. 6871, Jun. 2021, https://doi.org/10.3390/SU13126871. DOI: https://doi.org/10.3390/su13126871
United Nations, “Global CLEWS.” Accessed: Oct. 20, 2022. [Online]. Available: https://unite.un.org/sites/unite.un.org/files/app-globalclews-v-1-0/landingpage.html
B. T. Daher and R. H. Mohtar, “Water–energy–food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making,” https://doi.org/10.1080/02508060.2015.1074148, vol. 40, no. 5–6, pp. 748–771, Sep. 2015, https://doi.org/10.1080/02508060.2015.1074148. DOI: https://doi.org/10.1080/02508060.2015.1074148
J. Dargin, B. Daher, and R. H. Mohtar, “Complexity versus simplicity in water energy food nexus (WEF) assessment tools,” Science of the Total Environment, vol. 650, pp. 1566–1575, Feb. 2019, https://doi.org/10.1016/j.scitotenv.2018.09.080. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.080
S. Kaddoura and S. El Khatib, “Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making,” Environ Sci Policy, vol. 77, pp. 114–121, Nov. 2017, https://doi.org/10.1016/j.envsci.2017.07.007. DOI: https://doi.org/10.1016/j.envsci.2017.07.007
X. Zhang and V. V. Vesselinov, “Integrated modeling approach for optimal management of water, energy and food security nexus,” Adv Water Resour, vol. 101, pp. 1–10, Mar. 2017, https://doi.org/10.1016/J.ADVWATRES.2016.12.017. DOI: https://doi.org/10.1016/j.advwatres.2016.12.017
J. Chen, T. Ding, M. Li, and H. Wang, “Multi-objective optimization of a regional water–energy–food system considering environmental constraints: A case study of inner Mongolia, China,” Int J Environ Res Public Health, vol. 17, no. 18, pp. 1–22, Sep. 2020, https://doi.org/10.3390/ijerph17186834. DOI: https://doi.org/10.3390/ijerph17186834
V. C. Tidwell and V. Pebbles, “The Water-Energy-Environment Nexus in the Great Lakes Region: The Case for Integrated Resource Planning,” Energy and Environment Research, vol. 5, no. 2, p. 1, Dec. 2015, https://doi.org/10.5539/eer.v5n2p1. DOI: https://doi.org/10.5539/eer.v5n2p1
D. D. Konadu et al., “Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan,” Energy Policy, vol. 86, pp. 328–337, Nov. 2015, https://doi.org/10.1016/J.ENPOL.2015.07.008. DOI: https://doi.org/10.1016/j.enpol.2015.07.008
I. Kraucunas et al., “Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA),” Clim Change, vol. 129, no. 3–4, pp. 573–588, Apr. 2015, https://doi.org/10.1007/S10584-014-1064-9/FIGURES/4. DOI: https://doi.org/10.1007/s10584-014-1064-9
M. Welsch et al., “Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland,” Appl Energy, vol. 135, pp. 600–615, Dec. 2014, https://doi.org/10.1016/J.APENERGY.2014.08.072. DOI: https://doi.org/10.1016/j.apenergy.2014.08.072
S. S. Wigati, B. M. Sopha, A. M. Sri Asih, and H. Sutanta, “Bibliometric Analysis for Site Selection Problems Using Geographic Information Systems, Multi-Criteria Decision Analysis and Fuzzy Method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2019. https://doi.org/10.1088/1742-6596/1351/1/012051. DOI: https://doi.org/10.1088/1742-6596/1351/1/012051
Portal Gunungkidul, “Profil Gunungkidul.” Accessed: Dec. 18, 2022. [Online]. Available: https://gunungkidulkab.go.id/D-74db63a914e6fb0f4445120c6fa44e6a-NR-100-0.html
D. Borge-Diez, F. J. García-Moya, and E. Rosales-Asensio, “Water Energy Food Nexus Analysis and Management Tools: A Review,” Energies, vol. 15, no. 3. MDPI, Feb. 01, 2022. https://doi.org/10.3390/en15031146. DOI: https://doi.org/10.3390/en15031146
M. Howells, “Climate, Land, Energy and Water strategies (CLEWs).” [Online]. Available: https://archive.uneca.org/sites/default/files/images/climate_land_energy_and_water_strategies_clews.pdf.
E. Tercan, A. Eymen, T. Urfalı, and B. O. Saracoglu, “A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey,” Land use policy, vol. 102, no. January, 2021, https://doi.org/10.1016/j.landusepol.2020.105272. DOI: https://doi.org/10.1016/j.landusepol.2020.105272
M. A. Günen, “A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey,” Renew Energy, vol. 178, pp. 212–225, 2021, https://doi.org/10.1016/j.renene.2021.06.078. DOI: https://doi.org/10.1016/j.renene.2021.06.078
H. S. Ruiz, A. Sunarso, K. Ibrahim-Bathis, S. A. Murti, and I. Budiarto, “GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia,” Energy Reports, vol. 6, pp. 3249–3263, 2020, https://doi.org/10.1016/j.egyr.2020.11.198. DOI: https://doi.org/10.1016/j.egyr.2020.11.198
M. Zoghi, A. Houshang Ehsani, M. Sadat, M. javad Amiri, and S. Karimi, “Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 986–996, Feb. 2017, https://doi.org/10.1016/J.RSER.2015.07.014. DOI: https://doi.org/10.1016/j.rser.2015.07.014
H. Z. Al Garni and A. Awasthi, “Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia,” Appl Energy, vol. 206, no. September, pp. 1225–1240, 2017, https://doi.org/10.1016/j.apenergy.2017.10.024. DOI: https://doi.org/10.1016/j.apenergy.2017.10.024
E. Ustaoglu, S. Sisman, and A. C. Aydınoglu, “Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques,” Ecol Modell, vol. 455, Sep. 2021, https://doi.org/10.1016/j.ecolmodel.2021.109610. DOI: https://doi.org/10.1016/j.ecolmodel.2021.109610
E. Ustaoglu and A. C. Aydınoglu, “Site suitability analysis for green space development of Pendik district (Turkey),” Urban For Urban Green, vol. 47, p. 126542, Jan. 2020, https://doi.org/10.1016/J.UFUG.2019.126542. DOI: https://doi.org/10.1016/j.ufug.2019.126542
G. Romano, P. Dal Sasso, G. Trisorio Liuzzi, and F. Gentile, “Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy,” Land use policy, vol. 48, pp. 131–143, Nov. 2015, https://doi.org/10.1016/J.LANDUSEPOL.2015.05.013. DOI: https://doi.org/10.1016/j.landusepol.2015.05.013
A. Asakereh, M. Soleymani, and M. J. Sheikhdavoodi, “A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran,” Solar Energy, vol. 155, pp. 342–353, 2017, https://doi.org/10.1016/j.solener.2017.05.075. DOI: https://doi.org/10.1016/j.solener.2017.05.075
Kabupaten Gunungkidul, Perda Kab. Gunungkidul No. 6 Tahun 2011. 2011. Accessed: Dec. 19, 2022. [Online]. Available: https://yogyakarta.bpk.go.id/perda-kabupaten-gunungkidul-no-6-tahun-2011-tentang-rencana-tata-ruang-wilayah-kabupaten-gunungkidul-tahun-2010-2030/
T. L. Saaty, “Decision making with the analytic hierarchy process,” 2008. DOI: https://doi.org/10.1504/IJSSCI.2008.017590
E. Achbab, H. Rhinane, M. Maanan, and D. Saifaoui, “Developing and applying a GIS-Fuzzy AHP assisted approach to locating a hybrid renewable energy system with high potential: Case of Dakhla region-Morocco-,” in Proceedings - 2020 IEEE International Conference of Moroccan Geomatics, MORGEO 2020, 2020. https://doi.org/10.1109/Morgeo49228.2020.9121891. DOI: https://doi.org/10.1109/Morgeo49228.2020.9121891
Y. Noorollahi, A. Ghenaatpisheh Senani, A. Fadaei, M. Simaee, and R. Moltames, “A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach,” Renew Energy, vol. 186, pp. 89–104, Mar. 2022, https://doi.org/10.1016/j.renene.2021.12.124. DOI: https://doi.org/10.1016/j.renene.2021.12.124