Effect of Magnet Thickness and Width Variation on Back EMF of 18-Slot 16-Pole Permanent Magnet Synchronous Generator
Main Article Content
Abstract
Permanent magnet synchronous generators (PMSG) converts mechanical energy into electrical energy through electromagnetic induction, with the excitation field generated by permanent magnets instead of coils. This paper investigates the effects of varying magnet thickness and width on the back electromotive force (back EMF) of an 18-slot 16-pole PMSG using finite element method (FEM) simulations. The aim is to understand how these geometric parameters influence the back EMF values, which are crucial for generator design and performance evaluation. The FEM modelling results show that a 5 mm magnet thickness yields the highest back EMF value of 130.47 V, while a 15 mm magnet width produces a back EMF of 100.65 V. Additionally, the back EMF constant (KE) is maximized at 0.79 V·s/rad for a 5 mm magnet thickness and 0.55 V·s/rad for a 15 mm magnet width. These findings provide insights into optimising magnet dimensions for improving the efficiency and output characteristics of PMSGs in various applications.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
M. Monica, P. Sivakumar, S. J. Isac, and K. Ranjitha, ‘PMSG based WECS: Control techniques, MPPT methods and control strategies for standalone battery integrated system’, 2022, p. 040013. https://doi.org/10.1063/5.0072870.
K. Palanimuthu, G. Mayilsamy, S. R. Lee, S. Y. Jung, and Y. H. Joo, ‘Comparative analysis of maximum power extraction and control methods between PMSG and PMVG-based wind turbine systems’, International Journal of Electrical Power & Energy Systems, vol. 143, p. 108475, Dec. 2022, https://doi.org/10.1016/j.ijepes.2022.108475.
M. Kamruzzaman Khan Prince, M. T. Arif, A. Gargoom, A. M. T. Oo, and M. Enamul Haque, ‘Modeling, Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System’, Journal of Modern Power Systems and Clean Energy, vol. 9, no. 5, pp. 1054–1065, 2021, https://doi.org/10.35833/MPCE.2020.000601.
B. Majout et al., ‘A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG’, Energies (Basel), vol. 15, no. 17, p. 6238, Aug. 2022, https://doi.org/10.3390/en15176238.
B. Majout et al., ‘Improvement of PMSG-Based Wind Energy Conversion System Using Developed Sliding Mode Control’, Energies (Basel), vol. 15, no. 5, p. 1625, Feb. 2022, https://doi.org/10.3390/en15051625.
A. Bakbak, H. T. Canseven, M. Ayaz, M. Altintas, and E. Mese, ‘Maximizing Energy Extraction from Direct Grid Coupled PMSG For Wind Energy Conversion Systems’, IEEE Trans Ind Appl, vol. 58, no. 3, pp. 3888–3900, May 2022, https://doi.org/10.1109/TIA.2022.3160141.
D. Tarnapowicz, T. Zaleski, Z. Matuszak, and M. Jaskiewicz, ‘Energy Optimization of Marine Drive Systems with Permanent Magnet Synchronous Motors’, Energies (Basel), vol. 17, no. 1, p. 31, Dec. 2023, https://doi.org/10.3390/en17010031.
Z. Zheng, Q. Li, X. Li, P. Zheng, G. Qiao, and K. Wang, ‘Unified Control Scheme of Five-Phase Open-Winding Permanent-Magnet Synchronous Generator Systems for Aerospace Applications’, IEEE Access, vol. 9, pp. 121445–121455, 2021, https://doi.org/10.1109/ACCESS.2021.3108896.
Y.-W. Kim and S.-K. Sul, ‘Stability Analysis of Active Front End and Permanent Magnet Synchronous Generator With Back EMF-Based Sensorless Control for DC Marine Vessels’, IEEE Trans Power Electron, vol. 38, no. 4, pp. 5411–5421, Apr. 2023, https://doi.org/10.1109/TPEL.2022.3233889.
Liliana, Z. Aini, A. Wenda, and T. D. Putri, ‘Effect of Thickness and Type of Magnet against EMF Back PMSG 12S8P with FEM’, IOP Conf Ser Mater Sci Eng, vol. 990, no. 1, p. 012006, Nov. 2020, https://doi.org/10.1088/1757-899X/990/1/012006.
S. S. Wibowo, M. Saputra, A. H. Santoso, N. Rosidah, and A. Arinda, ‘Finite element modeling and analytic algorithm for electromagnetic performance of Permanent Magnet Synchronous Generator (PMSG) 24 Slot 16 poles from modification of induction motor 0, 75kw 3 Phase’, IOP Conf Ser Mater Sci Eng, vol. 1073, no. 1, p. 012031, Feb. 2021, https://doi.org/10.1088/1757-899X/1073/1/012031.
S. Amin, S. Madanzadeh, S. Khan, S. S. H. Bukhari, F. Akhtar, and J.-S. Ro, ‘Effect of the magnet shape on the performance of coreless axial flux permanent magnet synchronous generator’, Electrical Engineering, vol. 104, no. 2, pp. 959–968, Apr. 2022, https://doi.org/10.1007/s00202-021-01338-x.
H.-W. Kim, S.-S. Kim, and H.-S. Ko, ‘Modeling and control of PMSG-based variable-speed wind turbine’, Electric Power Systems Research, vol. 80, no. 1, pp. 46–52, Jan. 2010, https://doi.org/10.1016/j.epsr.2009.08.003.
H. Polinder, J. A. Ferreira, B. B. Jensen, A. B. Abrahamsen, K. Atallah, and R. A. McMahon, ‘Trends in Wind Turbine Generator Systems’, IEEE J Emerg Sel Top Power Electron, vol. 1, no. 3, pp. 174–185, Sep. 2013, https://doi.org/10.1109/JESTPE.2013.2280428.
J. X. Jin, R. H. Yang, R. T. Zhang, Y. J. Fan, Q. Xie, and X. Y. Chen, ‘Combined low voltage ride through and power smoothing control for DFIG/PMSG hybrid wind energy conversion system employing a SMES-based AC-DC unified power quality conditioner’, International Journal of Electrical Power & Energy Systems, vol. 128, p. 106733, Jun. 2021, https://doi.org/10.1016/j.ijepes.2020.106733.
B. Basnet, A. M. Aljehaimi, and P. Pillay, ‘Back-EMF Analysis of a Variable Flux Machine for Different Magnetization States’, IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9125–9135, Oct. 2021, https://doi.org/10.1109/TIE.2020.3026281.
Wei Hua, Ming Cheng, Z. Q. Zhu, and D. Howe, ‘Analysis and Optimization of Back EMF Waveform of a Flux-Switching Permanent Magnet Motor’, IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 727–733, Sep. 2008, https://doi.org/10.1109/TEC.2008.918612.
S. Ruangsinchaiwanich, Z. Q. Zhu, and D. Howe, ‘Influence of magnet shape on cogging torque and back-emf waveform in permanent magnet machines’, in 2005 International Conference on Electrical Machines and Systems, IEEE, 2005, pp. 284-289 Vol. 1. https://doi.org/10.1109/ICEMS.2005.202531.
Zhenhong Guo and Liuchen Chang, ‘FEM study on permanent magnet synchronous generators for small wind turbines’, in Canadian Conference on Electrical and Computer Engineering, 2005., IEEE, 2005, pp. 641–644. https://doi.org/10.1109/CCECE.2005.1557012.