Effect of Rotor Teeth Width Variations on Back EMF Constant of a 12-Slot 8-Pole Permanent Magnet Synchronous Generator: A Finite Element Analysis

Main Article Content

Isra' Nuur Darmawan
Sahid Aktob Mudilulail
Kholistianingsih Kholistianingsih

Abstract

Permanent Magnet Synchronous Generators (PMSGs) are widely used for converting mechanical energy into electrical energy through electromagnetic induction. Unlike conventional generators, PMSGs utilise permanent magnets to generate the excitation field, eliminating the need for external excitation coils. This study investigates the effects of rotor teeth width variations on the performance characteristics of a 12-slot, 8-pole PMSG using Finite Element Method (FEM) simulations. Specifically, the influence of rotor teeth width on flux density and back electromotive force (EMF) constant are explored. Three different rotor teeth widths, 5 mm, 7.5 mm, and 10 mm, are considered, and their impact on the generator's performance is evaluated. The FEM simulations reveal that increasing the rotor teeth width leads to a significant increase in the back-EMF constant values. The smallest back-EMF of 12.057 V and the lowest constant are observed for the 5 mm rotor teeth width, while the largest back-EMF of 20.774 V and the highest constant correspond to the 10 mm rotor teeth width. These findings highlight the importance of optimising rotor teeth geometry in PMSGs to achieve desired performance characteristics.

Article Details

How to Cite
Effect of Rotor Teeth Width Variations on Back EMF Constant of a 12-Slot 8-Pole Permanent Magnet Synchronous Generator: A Finite Element Analysis. (2024). Applied Engineering, Innovation, and Technology, 1(1), 23-30. https://doi.org/10.62777/aeit.v1i1.10
Section
Articles

How to Cite

Effect of Rotor Teeth Width Variations on Back EMF Constant of a 12-Slot 8-Pole Permanent Magnet Synchronous Generator: A Finite Element Analysis. (2024). Applied Engineering, Innovation, and Technology, 1(1), 23-30. https://doi.org/10.62777/aeit.v1i1.10

References

R. Ferguson, W. Wilkinson, and R. Hill, ‘Electricity use and economic development’, Energy Policy, vol. 28, no. 13, pp. 923–934, Nov. 2000, https://doi.org/10.1016/S0301-4215(00)00081-1.

S. Yoo and Y. Kim, ‘Electricity generation and economic growth in Indonesia’, Energy, vol. 31, no. 14, pp. 2890–2899, Nov. 2006, https://doi.org/10.1016/j.energy.2005.11.018.

N. U. Blum, R. Sryantoro Wakeling, and T. S. Schmidt, ‘Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia’, Renewable and Sustainable Energy Reviews, vol. 22, pp. 482–496, Jun. 2013, https://doi.org/10.1016/j.rser.2013.01.049.

M. H. Hasan, T. M. I. Mahlia, and H. Nur, ‘A review on energy scenario and sustainable energy in Indonesia’, Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2316–2328, May 2012, https://doi.org/10.1016/j.rser.2011.12.007.

M. Haratian, P. Tabibi, M. Sadeghi, B. Vaseghi, and A. Poustdouz, ‘A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran’, Renew Energy, vol. 125, pp. 926–935, Sep. 2018, https://doi.org/10.1016/j.renene.2018.02.078.

S. R. Sinsel, R. L. Riemke, and V. H. Hoffmann, ‘Challenges and solution technologies for the integration of variable renewable energy sources—a review’, Renew Energy, vol. 145, pp. 2271–2285, Jan. 2020, https://doi.org/10.1016/j.renene.2019.06.147.

S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang, ‘Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators’, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 316–328, Jan. 2011, https://doi.org/10.1109/TIE.2010.2044737.

H.-W. Kim, S.-S. Kim, and H.-S. Ko, ‘Modeling and control of PMSG-based variable-speed wind turbine’, Electric Power Systems Research, vol. 80, no. 1, pp. 46–52, Jan. 2010, https://doi.org/10.1016/j.epsr.2009.08.003.

H. Polinder, J. A. Ferreira, B. B. Jensen, A. B. Abrahamsen, K. Atallah, and R. A. McMahon, ‘Trends in Wind Turbine Generator Systems’, IEEE J Emerg Sel Top Power Electron, vol. 1, no. 3, pp. 174–185, Sep. 2013, https://doi.org/10.1109/JESTPE.2013.2280428.

J. X. Jin, R. H. Yang, R. T. Zhang, Y. J. Fan, Q. Xie, and X. Y. Chen, ‘Combined low voltage ride through and power smoothing control for DFIG/PMSG hybrid wind energy conversion system employing a SMES-based AC-DC unified power quality conditioner’, International Journal of Electrical Power & Energy Systems, vol. 128, p. 106733, Jun. 2021, https://doi.org/10.1016/j.ijepes.2020.106733.

T. Senjyu, S. Tamaki, N. Urasaki, K. Uezato, T. Funabashi, and H. Fujita, ‘Wind velocity and position sensorless operation for PMSG wind generator’, in The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003., IEEE, 2004, pp. 787–792. https://doi.org/10.1109/PEDS.2003.1283005.

H. Fang, Y. Wei, and Y. Feng, ‘Design of dual-rotor PMSG for wave energy conversion’, Energy Reports, vol. 6, pp. 397–401, Dec. 2020, https://doi.org/10.1016/j.egyr.2020.11.224.

G. Dhatt, G. Touzot, and E. Lefrancois, Finite Element Method. ISTE Ltd, John Wiley & Sons Inc., 2012.

G. P. Nikishkov, ‘Introduction to the Finite Element Method’. University of Aizu, 2009.

E. Giner, N. Sukumar, J. E. Tarancón, and F. J. Fuenmayor, ‘An Abaqus implementation of the extended finite element method’, Eng Fract Mech, vol. 76, no. 3, pp. 347–368, Feb. 2009, https://doi.org/10.1016/j.engfracmech.2008.10.015.