Vol. 2 No. 2 (2025)
Articles

Control Strategy Assessment: PID and Fuzzy-PID for Compound DC Motor Systems

Yaw Amankrah Sam-Okyere
University of Mines and Technology, Ghana
Emmanuel Osei-Kwame
Norfolk State University, United States
Dienatu Issaka
Ashesi University, Ghana
Isaac Papa Kwesi Arkorful
Norfolk State University, United States

Published 23-09-2025

Keywords

  • Nonlinear Systems,
  • Fuzzy,
  • PID controller,
  • Ziegler-Nicholas

How to Cite

[1]
Y. A. Sam-Okyere, E. . Osei-Kwame, D. Issaka, and I. P. K. . Arkorful, “Control Strategy Assessment: PID and Fuzzy-PID for Compound DC Motor Systems”, PEC, vol. 2, no. 2, pp. 119–131, Sep. 2025, doi: 10.62777/pec.v2i2.74.

Abstract

Compound DC motors, prized for their high torque and speed in industrial applications, demand robust control under nonlinear conditions. This study advances the field of Adaptive Neuro-Fuzzy Interface (ANFIS) by comparing a Ziegler-Nichols-tuned Proportional-Integral-Derivative (PID) controller with a novel ANFIS-PID controller for a compound DC motor. Unlike prior work, the research focuses on the unique dynamics of compound motors for real-time applications. Using MATLAB Simulink simulations. Performance was assessed via overshoot, rise time, settling time, and steady-state error under no-load and full-load conditions. The PID controller yielded 11.789% overshoot, 1.140s rise time, and 2.251s settling time, while the ANFIS-PID achieved 6.989% overshoot, 0.951s rise time, and 1.962s settling time, with a 50% lower steady-state error. These results, validated across 10 runs (p < 0.05), highlight the ANFIS-PID’s superior adaptability to the motor’s series-shunt dynamics, offering a 40.7% overshoot reduction.

References

  1. E. Soressi, “New life for old compound DC motors in industrial applications?,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), IEEE, Dec. 2012, pp. 1–6. doi: 10.1109/PEDES.2012.6484440.
  2. K. S. Al-Olimat, “A Step-by-Step Derivation of a Generalized Model Coupled With Questions Formulation Technique to Teach Different Types of dc Motors and Its Impact on Student Performance, the Course, and the Program,” IEEE Transactions on Education, vol. 65, no. 2, pp. 184–190, May 2022, doi: 10.1109/TE.2021.3108744.
  3. S. S. Sami, Z. A. Obaid, M. T. Muhssin, and A. N. Hussain, “Detailed modelling and simulation of different DC motor types for research and educational purposes,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 2, pp. 703–714, Jun. 2021, doi: 10.11591/ijpeds.v12.i2.pp703-714.
  4. R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” Int J Dyn Control, vol. 9, no. 2, pp. 818–827, Jun. 2021, doi: 10.1007/s40435-020-00665-4.
  5. B. Arhin, D. Kim, and H. Cha, “A dv/dt Filter Design Based on the Voltage Reflection Theory at SiC Converter,” in 2023 IEEE International Future Energy Electronics Conference (IFEEC), IEEE, Nov. 2023, pp. 469–472. doi: 10.1109/IFEEC58486.2023.10458620.
  6. C. Ofori, I. Oladeji, and R. Zamora, “A Fuzzy-based Technique for Series and Shunt FACTS Placement in a Distribution System,” in 2022 IEEE International Power and Renewable Energy Conference (IPRECON), IEEE, Dec. 2022, pp. 1–6. doi: 10.1109/IPRECON55716.2022.10059554.
  7. M. S. Rajan et al., “Diagnosis of fault node in wireless sensor networks using adaptive neuro-fuzzy inference system,” Appl Nanosci, vol. 13, no. 2, pp. 1007–1015, Feb. 2023, doi: 10.1007/s13204-021-01934-0.
  8. N. Kanagaraj, “An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance,” Intelligent Automation & Soft Computing, vol. 35, no. 3, pp. 3213–3226, 2023, doi: 10.32604/iasc.2023.029901.
  9. V. Dubey, H. Goud, and P. C. Sharma, “Role of PID Control Techniques in Process Control System: A Review,” in Data Engineering for Smart Systems: Proceedings of SSIC 2021, Singapore: Springer, 2022, pp. 659–670. doi: 10.1007/978-981-16-2641-8_62.
  10. A. Kundu, S. I. Tuhin, Md. S. H. Sani, Md. W. R. Easin, and Md. A. H. Masum, “Analytical Comparisons of the PID, ANN, and ANFIS Controllers’ Performance in the AVR System,” Int J Innov Sci Res Technol, vol. 8, no. 8, pp. 288–296, 2023.
  11. Y. Ahmed, A. Hoballah, E. Hendawi, S. Al Otaibi, S. K. Elsayed, and N. I. Elkalashy, “Fractional order PID controller adaptation for PMSM drive using hybrid grey wolf optimization,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 2, pp. 745–756, Jun. 2021, doi: 10.11591/ijpeds.v12.i2.pp745-756.
  12. V. Verma and S. Chauhan, “Adaptive PID-Fuzzy Logic Controller for Brushless DC Motor,” in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), IEEE, Jun. 2019, pp. 445–449. doi: 10.1109/ICECA.2019.8821941.
  13. A. A. El-samahy and M. A. Shamseldin, “Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control,” Ain Shams Engineering Journal, vol. 9, no. 3, pp. 341–352, Sep. 2018, doi: 10.1016/j.asej.2016.02.004.
  14. A. A. Fahmy and A. M. Abdel Ghany, “Adaptive functional-based neuro-fuzzy PID incremental controller structure,” Neural Comput Appl, vol. 26, no. 6, pp. 1423–1438, Aug. 2015, doi: 10.1007/s00521-014-1807-6.
  15. N. Qasim, “DC Motor Drive with P, PI, and Particle Swarm Optimization Speed Controllers,” Int J Comput Appl, vol. 166, no. 12, pp. 42–45, May 2017, doi: 10.5120/ijca2017914032.
  16. Z. Has, A. H. Muslim, and N. A. Mardiyah, “Adaptive-fuzzy-PID controller based disturbance observer for DC motor speed control,” in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, Sep. 2017, pp. 1–6. doi: 10.1109/EECSI.2017.8239165.
  17. A. Patil and G. Palnitkar, “Comparative Study and Implementation of Speed Control of BLDC Motor using Traditional PI and Fuzzy-PI Controller,” International Journal of Engineering Research & Technology, vol. 9, no. 04, pp. 568–573, Apr. 2020, doi: 10.17577/IJERTV9IS040527.
  18. S. Oladipo, Y. Sun, and Z. Wang, “Optimization of PID Controller with Metaheuristic Algorithms for DC Motor Drives: Review,” International Review of Electrical Engineering (IREE), vol. 15, no. 5, pp. 352–381, Oct. 2020, doi: 10.15866/iree.v15i5.18688.
  19. C. Ofori, J. Cudjoe Attachie, and F. Obeng-Adjapong, “A GSM-Based Fault Detection on Overhead Distribution Lines,” Jurnal Nasional Teknik Elektro, vol. 12, no. 2, pp. 70–79, Jul. 2023, doi: 10.25077/jnte.v12n2.986.2023.
  20. V. Ghosh, A. Sharma, and V. Bansal, “MATLAB and Simulink Modelling of a Full State Observer Controller of Armature Controlled and Field Controlled DC Motor using State Space Approach,” International Journal of Science and Research, vol. 8, no. 4, pp. 274–281, 2019.
  21. O. A. Somefun, K. Akingbade, and F. Dahunsi, “The dilemma of PID tuning,” Annu Rev Control, vol. 52, pp. 65–74, 2021, doi: 10.1016/j.arcontrol.2021.05.002.
  22. B. Arhin and H. Cha, “A New dv/dt Filter Design Method using the Voltage Reflection Theory,” in 2022 4th Global Power, Energy and Communication Conference (GPECOM), IEEE, Jun. 2022, pp. 107–111. doi: 10.1109/GPECOM55404.2022.9815657.
  23. E. Alexis, L. Cardelli, and A. Papachristodoulou, “On the Design of a PID Bio-Controller With Set Point Weighting and Filtered Derivative Action,” IEEE Control Syst Lett, vol. 6, pp. 3134–3139, 2022, doi: 10.1109/LCSYS.2022.3182911.
  24. M. Filo, S. Kumar, and M. Khammash, “A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance,” Nat Commun, vol. 13, no. 1, p. 2119, Apr. 2022, doi: 10.1038/s41467-022-29640-7.
  25. A. Verma, A. Rai, A. K. Singh, and H. K. Channid, “Design and Simulation of Armature Controlled DC Motor using MATLAB,” IJSRD - International Journal for Scientific Research & Development, vol. 8, no. 12, pp. 237–242, 2021.
  26. C. Ofori, Robert Ofosu, and E. A. Ametepe, “Optimal Mini-grid for Rural Electrification: A Case Study of Sekoukou-Niger,” Jurnal Nasional Teknik Elektro, vol. 11, no. 3, pp. 141–149, Nov. 2022, doi: 10.25077/jnte.v11n3.1053.2022.
  27. N. Rathnayake, T. L. Dang, and Y. Hoshino, “A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System,” International Journal of Fuzzy Systems, vol. 23, no. 7, pp. 1955–1971, Oct. 2021, doi: 10.1007/s40815-021-01076-z.
  28. L. Dwomoh, P. Addo, E. Osei-Kwame, I. Arkorful, and I. Ampem, “Design and Implementation of a Power Dispatch Controller for Optimal Energy Management in a Grid-Connected System,” Journal of Power, Energy, and Control, vol. 2, no. 1, pp. 55–66, May 2025, doi: 10.62777/pec.v2i1.49.
  29. E. Osei-Kwame, Y. Sam-Okyere, and L. Dwomoh, “Automatic Switching System for Submersible Motor Pump: Case Study of a Cocoa Processing Company in Ghana,” Journal of Power, Energy, and Control, vol. 2, no. 1, pp. 27–42, Apr. 2025, doi: 10.62777/pec.v2i1.50.
  30. I. Arkorful, D. Williams, D. Wondoh, and I. Ampem, “Optimizing Mill Grinding Media Charging to Enhance the Efficiency of the Comminution Process using PLC and SCADA,” IJISET - International Journal of Innovative Science, Engineering & Technology, vol. 11, no. 10, pp. 36–45, 2024.
  31. I. A. Ampem, I. P. K. Arkorful, L. Dwomoh, and Y. Sefa-Boateng, “Design and Implementation of a Smart Traffic Control Signal for Suburban Areas: A Case Study of Tarkwa-Nsuaem,” Applied Engineering, Innovation, and Technology, vol. 2, no. 1, pp. 22–32, May 2025, doi: 10.62777/aeit.v2i1.52.