Modification of Polycrystalline PV String for Charging on Electric Scooter

Main Article Content

Fadhillah Hazrina
Purwiyanto Purwiyanto
Naufal Ali
Syam Widiyanto

Abstract

Electric scooters rely on batteries to power BLDC motors, which are traditionally recharged through the household electricity grid. However, alternatives like solar energy are being explored to reduce dependency on conventional power sources. A challenge arises due to the discrepancy in voltage compatibility between standard solar panels and scooter batteries. Typically, a 36 V scooter battery requires a higher voltage input than the 18 V output of a single solar panel. This requires modifications to align solar cell design with battery voltage requirements. This study implements a PZEM-015 sensor for monitoring battery energy consumption. The contribution of this study is twofold: to develop and optimise solar cell modification for effective battery charging and to assess battery consumption concerning speed and travel duration. Testing reveals that a series circuit modification yields an average voltage of 39.2 V and an average current of 0.55 A, resulting in 21.8 Wp of power output. Analysis of scooter performance indicates that maintaining speeds between 4.16 m/s and 5.55 m/s significantly extends travel time and conserves battery energy. These findings highlight the potential of modified solar PV in enhancing electric scooter efficiency and sustainability.

Article Details

How to Cite
[1]
“Modification of Polycrystalline PV String for Charging on Electric Scooter”, PEC, vol. 1, no. 1, pp. 24–35, Apr. 2024, doi: 10.62777/pec.v1i1.5.
Section
Articles

How to Cite

[1]
“Modification of Polycrystalline PV String for Charging on Electric Scooter”, PEC, vol. 1, no. 1, pp. 24–35, Apr. 2024, doi: 10.62777/pec.v1i1.5.

References

B. Nainggolan, F. Inaswara, G. Pratiwi, and H. Ramadhan, “Rancang Bangun Sepeda Listrik Menggunakan Panel Surya sebagai Pengisi Baterai,” Jurnal Poli-Teknologi, vol. 15, no. 3, pp. 263–272, Mar. 2017, https://doi.org/10.32722/pt.v15i3.861. DOI: https://doi.org/10.32722/pt.v15i3.861

K. Kazemzadeh and F. Sprei, “Towards an electric scooter level of service: A review and framework,” Travel Behav Soc, vol. 29, pp. 149–164, Oct. 2022, https://doi.org/10.1016/j.tbs.2022.06.005. DOI: https://doi.org/10.1016/j.tbs.2022.06.005

E. Prayogi, E. Prasetyo, and A. Riski, “ Pemanfaatan Energi Surya Sebagai Sumber Energi Sepeda Listrik,” in Seminar Rekayasa Teknologi (SemResTek), Jakarta: Universitas Pancasila, Nov. 2020, pp. KE73–KE78.

R. Zhu et al., “Solar photovoltaic generation for charging shared electric scooters,” Appl Energy, vol. 313, p. 118728, May 2022, https://doi.org/10.1016/j.apenergy.2022.118728. DOI: https://doi.org/10.1016/j.apenergy.2022.118728

A. Martinez-Navarro, V.-A. Cloquell-Ballester, and S. Segui-Chilet, “Photovoltaic Electric Scooter Charger Dock for the Development of Sustainable Mobility in Urban Environments,” IEEE Access, vol. 8, pp. 169486–169495, 2020, https://doi.org/10.1109/ACCESS.2020.3023881. DOI: https://doi.org/10.1109/ACCESS.2020.3023881

M. Asti, I. Supriyadi, and P. Yusgiantoro, “Analisa Penggunaan Sepeda Motor Listrik bagi Transportasi Online Terhadap Ketahanan Energi (Studi pada Gojek),” Jurnal Ketahanan Energi, vol. 6, no. 1, pp. 19–38, 2020.

Y. Oktaviani, S. Baqaruzi, and H. -, “Analisis Sistem Hibrida Tegangan PLN vs Tegangan Panel Surya 30 Wp pada Otoped Electric Vehicle (EV),” Power Elektronik : Jurnal Orang Elektro, vol. 11, no. 2, pp. 128–141, Jan. 2022, https://doi.org/10.30591/polektro.v11i1.2676. DOI: https://doi.org/10.30591/polektro.v11i1.2676

H. Doubabi, Y. Oublaid, I. Salhi, M. Chennani, and N. Essounbouli, “A Reliable Power Management Strategy of a PV-Based Electric Scooters Charging Station,” in 2021 7th International Conference on Optimization and Applications (ICOA), IEEE, May 2021, pp. 1–6. https://doi.org/10.1109/ICOA51614.2021.9442660. DOI: https://doi.org/10.1109/ICOA51614.2021.9442660

D. Sugiyanto, “Rancang bangun sistem sepeda energi surya dengan memanfaatkan solar cell,” Momentum, vol. 11, no. 1, pp. 34–37, 2015.

Moh. Alfian and N. Nurhadi, “Konsumsi Daya Baterai Electric Scooter Berbasis Solar Cell,” Jurnal Aplikasi dan Inovasi Ipteks “Soliditas” (J-SOLID), vol. 5, no. 2, pp. 243–251, Oct. 2022, https://doi.org/10.31328/js.v5i2.3836. DOI: https://doi.org/10.31328/js.v5i2.3836

“Perancangan Otoped Listrik Menggunakan Panel Surya Sebagai Media Transportasi,” RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, vol. 5, no. 1, pp. 62–65, Jul. 2022, https://doi.org/10.30596/rele.v5i1.10793. DOI: https://doi.org/10.30596/rele.v5i1.10793

R. Duanaputri, I. Heryanto/Eryk, M. F. Sajidan, and Ayusta Lukita Wardani, “Sistem Monitoring Online Dan Analisis Perfomansi Plts Panel Surya Monocrystalline 100 Wp Berbasis Web,” Elposys: Jurnal Sistem Kelistrikan, vol. 10, no. 1, pp. 1–6, Mar. 2023, https://doi.org/10.33795/elposys.v10i1.715. DOI: https://doi.org/10.33795/elposys.v10i1.715

M. Green, E. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (version 57),” Progress in Photovoltaics: Research and Applications, vol. 29, no. 1, pp. 3–15, Jan. 2021, https://doi.org/10.1002/pip.3371. DOI: https://doi.org/10.1002/pip.3371

T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-ion batteries: outlook on present, future, and hybridized technologies,” J Mater Chem A Mater, vol. 7, no. 7, pp. 2942–2964, 2019, https://doi.org/10.1039/C8TA10513H. DOI: https://doi.org/10.1039/C8TA10513H

A. Asrori, M. Z. F. Harahap, and A. Harijono, “Perbandingan Performansi Panel Surya Tipe Amorphous dan Polycrystalline terhadap Daya Pengisian Baterai Lithium-Ion pada Electric Scooter,” Briliant: Jurnal Riset dan Konseptual, vol. 7, no. 4, pp. 1091–1103, Nov. 2022, https://doi.org/10.28926/briliant.v7i4.1056. DOI: https://doi.org/10.28926/briliant.v7i4.1056

K. W. Fauzi, T. Arfianto, and N. Taryana, “Perancangan dan Realisasi Solar Tracking System Untuk Peningkatan Efisiensi Panel Surya Menggunakan Arduino Uno,” TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol, vol. 4, no. 1, pp. 63–74, May 2018, https://doi.org/10.15575/telka.v4n1.63-74. DOI: https://doi.org/10.15575/telka.v4n1.63-74

S. Raveendar, P.M. Manikandan, S. Saravanan, and V. Dhinesh, “Flyback Converter Based BLDC Motor Drives for Power Device Applications,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 2, pp. 1632–1637, 2020.