Assessing the Potential of Biomass Power Generation for Renewable Energy Transition in South Papua Province, Indonesia
Main Article Content
Abstract
This study aims to explore the potential for biomass-based power plant to accelerate the development of renewable energy to replace the role of fossil energy in Merauke district, South Papua Province. The method used in this study is, first, to collect data and analyze the load on the grid system and the portion of the energy mix as well as the availability of woody biomass from forest areas by making a simulation of the development of a 2 x 12 MW Biomass Power Plant. Second, by conducting experiments to obtain woodchip conversion, as the fuel of the Biomass Power Plant, from the wood log and conversion from Biomass Power Plant capacity to the required biomass plantation area. The results provide an overview of the big potency for developing biomass-based power generation by utilizing biomass from the local industrial plantation forest and show the energy transition towards energy independence. This study can be useful for policy makers and opportunities for entrepreneurs or suppliers of wood biomass, as well. For the future, in terms of fuel efficiency, it is necessary to reduce the plantation area as a source of biomass for power plants by reducing the moisture content of the woodchip to increase the calorific value and utilizing the forest residue. Furthermore, the comparison cost study between fossil power plant and biomass power plant, as well as the strategy for preserving the plantation to ensure a steady biomass supply is conducted.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
N. K. Arora and I. Mishra, “COP26: more challenges than achievements,” Environmental Sustainability, vol. 4, no. 4, pp. 585–588, Dec. 2021, https://doi.org/10.1007/s42398-021-00212-7. DOI: https://doi.org/10.1007/s42398-021-00212-7
C. Tebaldi et al., “Extreme sea levels at different global warming levels,” Nat Clim Chang, vol. 11, no. 9, pp. 746–751, Sep. 2021, https://doi.org/10.1038/s41558-021-01127-1. DOI: https://doi.org/10.1038/s41558-021-01127-1
IRENA, “World Energy Transitions Outlook: 1.5°C Pathway,” Abu Dhabi, 2022. [Online]. Available: https://www.irena.org/Publications/2022/Mar/World-Energy-Transitions-Outlook-2022
A. Wyns and J. Beagley, “COP26 and beyond: long-term climate strategies are key to safeguard health and equity,” Lancet Planet Health, vol. 5, no. 11, pp. e752–e754, Nov. 2021, https://doi.org/10.1016/S2542-5196(21)00294-1. DOI: https://doi.org/10.1016/S2542-5196(21)00294-1
S. A. Suttles, W. E. Tyner, G. Shively, R. D. Sands, and B. Sohngen, “Economic effects of bioenergy policy in the United States and Europe: A general equilibrium approach focusing on forest biomass,” Renew Energy, vol. 69, pp. 428–436, Sep. 2014, https://doi.org/10.1016/j.renene.2014.03.067. DOI: https://doi.org/10.1016/j.renene.2014.03.067
C. Cheng, X. Ren, and Z. Wang, “The impact of renewable energy and innovation on carbon emission: An empirical analysis for OECD countries,” Energy Procedia, vol. 158, pp. 3506–3512, Feb. 2019, https://doi.org/10.1016/j.egypro.2019.01.919. DOI: https://doi.org/10.1016/j.egypro.2019.01.919
T. M. Letcher, “Why do we have global warming?,” in Managing Global Warming, Elsevier, 2019, pp. 3–15. https://doi.org/10.1016/B978-0-12-814104-5.00001-6. DOI: https://doi.org/10.1016/B978-0-12-814104-5.00001-6
F. Perera and K. Nadeau, “Climate Change, Fossil-Fuel Pollution, and Children’s Health,” New England Journal of Medicine, vol. 386, no. 24, pp. 2303–2314, Jun. 2022, https://doi.org/10.1056/NEJMra2117706. DOI: https://doi.org/10.1056/NEJMra2117706
J. Doh, P. Budhwar, and G. Wood, “Long-term energy transitions and international business: Concepts, theory, methods, and a research agenda,” J Int Bus Stud, vol. 52, no. 5, pp. 951–970, Jul. 2021, https://doi.org/10.1057/s41267-021-00405-6. DOI: https://doi.org/10.1057/s41267-021-00405-6
A. Kalair, N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan, “Role of energy storage systems in energy transition from fossil fuels to renewables,” Energy Storage, vol. 3, no. 1, p. 1, Feb. 2021, https://doi.org/10.1002/est2.135. DOI: https://doi.org/10.1002/est2.135
I. Akbar, D. Arisaktiwardhana, and P. Naomi, “How Does Indonesian Scientific Production on Renewable Energy Successfully Support the Policy Design? A Journey Towards Sustainable Energy Transition,” Problemy Ekorozwoju, vol. 15, no. 2, pp. 41–52, Jul. 2020, https://doi.org/10.35784/pe.2020.2.05. DOI: https://doi.org/10.35784/pe.2020.2.05
S. Widya Yudha and B. Tjahjono, “Stakeholder Mapping and Analysis of the Renewable Energy Industry in Indonesia,” Energies (Basel), vol. 12, no. 4, p. 602, Feb. 2019, https://doi.org/10.3390/en12040602. DOI: https://doi.org/10.3390/en12040602
R. Agung Wahyuono and M. Magenika Julian, “Revisiting Renewable Energy Map in Indonesia: Seasonal Hydro and Solar Energy Potential for Rural Off-Grid Electrification (Provincial Level),” MATEC Web of Conferences, vol. 164, p. 01040, Apr. 2018, https://doi.org/10.1051/matecconf/201816401040. DOI: https://doi.org/10.1051/matecconf/201816401040
D. S. Primadita, I. N. S. Kumara, and W. G. Ariastina, “A Review on Biomass for Electricity Generation in Indonesia,” Journal of Electrical, Electronics and Informatics, vol. 4, no. 1, p. 1, Feb. 2020, https://doi.org/10.24843/JEEI.2020.v04.i01.p01. DOI: https://doi.org/10.24843/JEEI.2020.v04.i01.p01
W. E. M. Hughes and E. D. Larson, “Effect of Fuel Moisture Content on Biomass-IGCC Performance,” in Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations, American Society of Mechanical Engineers, Jun. 1997, pp. 455–459. https://doi.org/10.1115/97-GT-004. DOI: https://doi.org/10.1115/97-GT-004
D. C. Bianchini and F. J. Simioni, “Economic and risk assessment of industrial wood chip drying,” Sustainable Energy Technologies and Assessments, vol. 44, p. 101016, Apr. 2021, https://doi.org/10.1016/j.seta.2021.101016. DOI: https://doi.org/10.1016/j.seta.2021.101016
H.-W. Lee, “Study on the Estimation of Drying Time of Biomass : 1. Larch Wood Chip,” Journal of the Korean Wood Science and Technology, vol. 43, no. 2, pp. 186–195, Mar. 2015, https://doi.org/10.5658/WOOD.2015.43.2.186. DOI: https://doi.org/10.5658/WOOD.2015.43.2.186
J. P. Wolf and Dong, “Biomass combustion for power generation: an introduction,” in Biomass Combustion Science, Technology and Engineering, Elsevier, 2013, pp. 3–8. https://doi.org/10.1533/9780857097439.1.3. DOI: https://doi.org/10.1533/9780857097439.1.3
R. York and S. E. Bell, “Energy transitions or additions?,” Energy Res Soc Sci, vol. 51, pp. 40–43, May 2019, https://doi.org/10.1016/j.erss.2019.01.008. DOI: https://doi.org/10.1016/j.erss.2019.01.008
J. Köhler et al., “An agenda for sustainability transitions research: State of the art and future directions,” Environ Innov Soc Transit, vol. 31, pp. 1–32, Jun. 2019, https://doi.org/10.1016/j.eist.2019.01.004. DOI: https://doi.org/10.1016/j.eist.2019.01.004
D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strategy Reviews, vol. 24, pp. 38–50, Apr. 2019, https://doi.org/10.1016/j.esr.2019.01.006. DOI: https://doi.org/10.1016/j.esr.2019.01.006
S. A. Qadir, H. Al-Motairi, F. Tahir, and L. Al-Fagih, “Incentives and strategies for financing the renewable energy transition: A review,” Energy Reports, vol. 7, pp. 3590–3606, Nov. 2021, https://doi.org/10.1016/j.egyr.2021.06.041. DOI: https://doi.org/10.1016/j.egyr.2021.06.041
M. de la E. Mata Pérez, D. Scholten, and K. Smith Stegen, “The multi-speed energy transition in Europe: Opportunities and challenges for EU energy security,” Energy Strategy Reviews, vol. 26, p. 100415, Nov. 2019, https://doi.org/10.1016/j.esr.2019.100415. DOI: https://doi.org/10.1016/j.esr.2019.100415
I. Khan, F. Hou, A. Zakari, and V. K. Tawiah, “The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries,” Energy, vol. 222, p. 119935, May 2021, https://doi.org/10.1016/j.energy.2021.119935. DOI: https://doi.org/10.1016/j.energy.2021.119935
M. Guo, W. Song, and J. Buhain, “Bioenergy and biofuels: History, status, and perspective,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 712–725, Feb. 2015, https://doi.org/10.1016/j.rser.2014.10.013. DOI: https://doi.org/10.1016/j.rser.2014.10.013
B. Mola-Yudego et al., “Wood biomass potentials for energy in northern Europe: Forest or plantations?,” Biomass Bioenergy, vol. 106, pp. 95–103, Nov. 2017, https://doi.org/10.1016/j.biombioe.2017.08.021. DOI: https://doi.org/10.1016/j.biombioe.2017.08.021
L. Gustavsson, T. Nguyen, R. Sathre, and U. Y. A. Tettey, “Climate effects of forestry and substitution of concrete buildings and fossil energy,” Renewable and Sustainable Energy Reviews, vol. 136, p. 110435, Feb. 2021, https://doi.org/10.1016/j.rser.2020.110435. DOI: https://doi.org/10.1016/j.rser.2020.110435
C. Cambero and T. Sowlati, “Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature,” Renewable and Sustainable Energy Reviews, vol. 36, pp. 62–73, Aug. 2014, https://doi.org/10.1016/j.rser.2014.04.041. DOI: https://doi.org/10.1016/j.rser.2014.04.041
M. A. da S. Miranda, G. B. de D. Ribeiro, S. R. Valverde, and C. Isbaex, “Eucalyptus sp. Woodchip Potential for Industrial Thermal Energy Production,” Revista Árvore, vol. 41, no. 6, Nov. 2017, https://doi.org/10.1590/1806-90882017000600004. DOI: https://doi.org/10.1590/1806-90882017000600004
G. B. de D. Ribeiro, M. A. de Magalhães, F. R. S. Batista, M. A. da S. Miranda, S. R. Valverde, and A. de C. de O. Carneiro, “Evaluation of Eucalyptus woodchip utilization as fuel for thermal power plants,” Maderas. Ciencia y tecnología, vol. 23, no. 23, pp. 1–12, Apr. 2021, https://doi.org/10.4067/S0718-221X2021000100429. DOI: https://doi.org/10.4067/S0718-221X2021000100429
S. Shah and D. M. Adhyaru, “Boiler efficiency analysis using direct method,” in 2011 Nirma University International Conference on Engineering, IEEE, Dec. 2011, pp. 1–5. https://doi.org/10.1109/NUiConE.2011.6153313. DOI: https://doi.org/10.1109/NUiConE.2011.6153313
P. Celen and H. H. Erdem, “A Case Study for Calculation of Boiler Efficiency by Using Indirect Method,” in 3rd Conference on Advances in Mechanical Engineering (ICAME2017), Istanbul, 2017.
S. Purseth, J. Dansena, and M. Shyamkant Desai, “Performance Analysis and Efficiency Improvement of Boilera Review,” International Journal of Engineering Applied Sciences and Technology, vol. 5, no. 12, pp. 326–331, Apr. 2021, https://doi.org/10.33564/IJEAST.2021.v05i12.057. DOI: https://doi.org/10.33564/IJEAST.2021.v05i12.057
P. V. V. Rajesh, K. Abhinash, and P. N. E. Naveen, “Overall efficiency in the improvement of an industrial boiler using coal activator,” Spec Educ, vol. 1, no. 43, p. 5313, 2022.
C. Kusmana, “Forest resources and forestry in Indonesia,” Forest Sci Technol, vol. 7, no. 4, pp. 155–160, Dec. 2011, https://doi.org/10.1080/21580103.2011.625241. DOI: https://doi.org/10.1080/21580103.2011.625241
J. Hu, J. Herbohn, R. L. Chazdon, J. Baynes, and J. Vanclay, “Silvicultural treatment effects on commercial timber volume and functional composition of a selectively logged Australian tropical forest over 48 years,” For Ecol Manage, vol. 457, p. 117690, Feb. 2020, https://doi.org/10.1016/j.foreco.2019.117690. DOI: https://doi.org/10.1016/j.foreco.2019.117690
F. A. Lamis and Muhdin, “Research Review on Implementation of Intensive Silviculture Techniques,” IOP Conf Ser Earth Environ Sci, vol. 394, no. 1, p. 012057, Nov. 2019, https://doi.org/10.1088/1755-1315/394/1/012057. DOI: https://doi.org/10.1088/1755-1315/394/1/012057
N. Pedišius, M. Praspaliauskas, J. Pedišius, and E. F. Dzenajavičienė, “Analysis of Wood Chip Characteristics for Energy Production in Lithuania,” Energies (Basel), vol. 14, no. 13, p. 3931, Jun. 2021, https://doi.org/10.3390/en14133931. DOI: https://doi.org/10.3390/en14133931
S. Martoyoedo et al., “Utilizing the Heat Waste from Biomass Power Generation to Reduce the Moisture Content of Woodchips,” BIO Web Conf, vol. 104, p. 00039, May 2024, https://doi.org/10.1051/bioconf/202410400039. DOI: https://doi.org/10.1051/bioconf/202410400039
O. Kaplan and C. Celik, “An experimental research on woodchip drying using a screw conveyor dryer,” Fuel, vol. 215, pp. 468–473, Mar. 2018, https://doi.org/10.1016/j.fuel.2017.11.098. DOI: https://doi.org/10.1016/j.fuel.2017.11.098
J. Yi, X. Li, J. He, and X. Duan, “Drying efficiency and product quality of biomass drying: a review,” Drying Technology, vol. 38, no. 15, pp. 2039–2054, Nov. 2020, https://doi.org/10.1080/07373937.2019.1628772. DOI: https://doi.org/10.1080/07373937.2019.1628772
T. Gebreegziabher, A. O. Oyedun, and C. W. Hui, “Optimum biomass drying for combustion – A modeling approach,” Energy, vol. 53, pp. 67–73, May 2013, https://doi.org/10.1016/j.energy.2013.03.004. DOI: https://doi.org/10.1016/j.energy.2013.03.004
Q.-V. Bach, Ø. Skreiberg, and C.-J. Lee, “Process modeling and optimization for torrefaction of forest residues,” Energy, vol. 138, pp. 348–354, Nov. 2017, https://doi.org/10.1016/j.energy.2017.07.040. DOI: https://doi.org/10.1016/j.energy.2017.07.040