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Abstract: Compound DC motors, prized for their high torque and speed in
industrial applications, demand robust control under nonlinear conditions. This
study advances the field of Adaptive Neuro-Fuzzy Interface (ANFIS) by
comparing a Ziegler-Nichols-tuned Proportional-Integral-Derivative (PID)
controller with a novel ANFIS-PID controller for a compound DC motor. Unlike
prior work, the research focuses on the unique dynamics of compound motors
for real-time applications. Using MATLAB Simulink simulations. Performance
was assessed via overshoot, rise time, settling time, and steady-state error
under no-load and full-load conditions. The PID controller yielded 11.789%
overshoot, 1.140s rise time, and 2.251s settling time, while the ANFIS-PID
achieved 6.989% overshoot, 0.951s rise time, and 1.962s settling time, with a
50% lower steady-state error. These results, validated across 10 runs (p < 0.05),
highlight the ANFIS-PID’s superior adaptability to the motor’s series-shunt
dynamics, offering a 40.7% overshoot reduction.

Keywords: nonlinear systems, fuzzy, PID controller, Ziegler-Nichols

1. Introduction

Industrial control systems play an important role in modern automation, ensuring
precision, efficiency, and reliability in various applications. Among these, DC compound
motors are widely used due to their ability to deliver high torque, high speed, and stable
operation across diverse industrial environments [1], [2], [3]. Their functionality makes
them an essential component in industries such as manufacturing, transportation,
robotics, and power generation. However, to maximize their efficiency, an effective
control strategy is required to regulate their speed and performance under different load
conditions. One of the most commonly employed controllers in industrial systems is the
Proportional-Integral-Derivative (PID) controller. The PID controller is well-known for its
ability to maintain system stability by adjusting its control parameters based on
proportional, integral, and derivative actions. This controller is highly effective in linear
and symmetric systems where system dynamics do not significantly fluctuate [4], [5].
However, its performance degrades when applied to nonlinear and asymmetric systems,
such as compound DC motors operating under varying loads. This limitation necessitates
the exploration of advanced control methods to improve performance and adaptability.
Fuzzy logic, an artificial intelligence-based approach, has gained attention as an
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alternative control technique due to its ability to handle nonlinearities and uncertainties
in dynamic systems. Unlike PID controllers, which rely on precise mathematical models,
fuzzy logic controllers (FLCs) utilize human-like reasoning and linguistic rules to determine
control actions [6].

The Adaptive Neuro-Fuzzy Inference System (ANFIS)-PID controller integrates the
strengths of both fuzzy logic and traditional PID control, offering a more adaptable and
efficient solution for controlling complex industrial processes [7], [8]. This hybrid
approach enhances system response time, reduces overshoot, and improves stability,
making it particularly suited for controlling compound DC motors. The need for an
improved control strategy for DC compound motors arises due to challenges such as
fluctuating loads, unpredictable disturbances, and the demand for high-speed response
in industrial applications. Conventional PID controllers, while effective in standard
conditions, require continuous manual tuning to adapt to varying operating conditions
[9]. On the other hand, ANFIS-based controllers leverage artificial intelligence to self-
adjust control parameters, ensuring real-time adaptability and optimal performance [10].
This automation reduces human intervention and enhances overall system reliability. The
motivation behind this study is to compare the performance of traditional PID controllers
and ANFIS-PID controllers in regulating compound DC motors. The research aims to
identify the strengths and weaknesses of each approach, focusing on key performance
indicators such as rise time, settling time, and overshoot. By conducting simulations in
MATLAB Simulink, this study will provide empirical evidence on the effectiveness of each
controller type, offering valuable insights for engineers and researchers working in the
field of motor control. Furthermore, advancements in smart control systems demand
adaptive and intelligent controllers capable of responding to dynamic industrial
environments. The integration of fuzzy logic with PID controllers presents an opportunity
to develop more robust and efficient control systems. Understanding the differences in
performance between traditional and intelligent controllers will aid in the development
of future automation technologies, reducing energy consumption, improving machine
lifespan, and optimizing industrial operations.

In the area of industrial motor control, extensive research has been conducted on
optimizing the performance of DC compound motors through various control strategies.
The following literature review will explore the existing methodologies, limitations, and
advancements in PID and fuzzy logic-based control systems. The literature review will also
identify key gaps in previous research, particularly regarding the integration of intelligent
control strategies for compound DC motors. By analysing various studies, this review
provides a comparative framework to evaluate different control approaches, considering
parameters such as stability, response time, and efficiency. This foundation helps justify
the need for further research into ANFIS-based control systems and their potential to
enhance the performance, reliability, and adaptability of industrial motor applications. In
[11], the researchers introduced a method for controlling the speed of a DC motor under
varying load conditions. They developed a linear system model for a separately excited
DC motor, incorporating torque variations, and implemented a PID controller. The
proposed system was simulated using MATLAB's Simulink platform to evaluate its
performance under no-load and full-load conditions. The experiment maintained a
constant motor speed throughout. Simulation results demonstrated that the motor
maintained a nearly constant speed despite load changes. Under full-load conditions, the
motor speed decreased by approximately 270 rpm (9%) within 980 milliseconds. The
findings indicate that the PID controller effectively manages motor speed in the presence
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of load disturbances. However, during unloading conditions, the motor speed exhibited
oscillations of about 200 rpm (6.66%) over 900 milliseconds.

In [12], the researchers formulated a transfer function for a three-phase BLDC
motor, enabling further analysis of its control and stability. They also introduced an
adaptive fuzzy logic PID controller designed to dynamically adjust to speed variations. The
controller effectively responds to dynamic speed changes, allowing the motor to quickly
stabilize at the new target speed. Meanwhile, the authors in [13] employed two distinct
control strategies to ensure effective speed regulation and tracking in the presence of
external disturbances and parameter variations. The first strategy, a fuzzy PID controller,
dynamically adjusts its parameters based on the error and its rate of change to achieve
precise speed tracking. The second strategy utilizes Model Reference Adaptive Control
(MRAC) integrated with a PID compensator. Without the PID compensator, MRAC exhibits
significant overshooting and elevated Sum-of-Squares (S.0.S) error. Incorporating the PID
compensator enhances MRAC performance. Simulation results demonstrate that both
controllers are robust and well-suited for high-performance drive applications. Notably,
MRAC outperforms the self-tuning fuzzy PID controller, particularly in systems
experiencing abrupt disturbances.

The authors in [14] developed a Novel Fuzzy Single-Neuron PID (NFSNPID)
controller for a high-performance brushless DC motor by integrating adaptive neural
network and PID techniques. The design process was divided into two stages. Initially, a
genetic algorithm was employed to determine the optimal parameters for the Single-
Neuron PID controller. Subsequently, a fuzzy logic control system was designed to
dynamically adjust the weights of the Single-Neuron PID controller in real-time. To
validate the effectiveness of the proposed controller, a comparative analysis was
conducted, evaluating the NFSNPID against a conventional fuzzy single neuron PID
controller and a standard single neuron PID controller. In [15], the authors explored DC
motor drive control using Proportional (P), Proportional-Integral (Pl), and Particle Swarm
Optimization (PSO)-based speed controllers. The study concluded that PSO-based
controllers exhibit better accuracy and divergence speed, making the system less
sensitive to gain variations. However, one notable limitation was the increased number
of iterations required, which could lead to computational inefficiencies. In [16], the
authors proposed an Adaptive-Fuzzy-PID Controller with a Disturbance Observer (DOb)
for DC motor speed control. Their approach demonstrated better transient response and
improved compensation for load variations. However, the study acknowledged that the
rotor position, motor speed, and electromagnetic torque were too small and neglected
in their model, potentially affecting real-world applicability.

In [17], the authors conducted a comparative study on the speed control of BLDC
motors, employing Traditional Pl and fuzzy-PI controllers. Their findings indicated that the
fuzzy-Pl controller improved speed response, particularly when implemented using an
ATMEGA328P-PU microcontroller. However, the system exhibited unconditional loading
behavior, which could pose challenges in dynamic environments. The authors in [18]
examined the optimization of PID controllers using metaheuristic algorithms for DC motor
drives. Their review highlighted that metaheuristic approaches provide more efficient
control capability compared to traditional methods in choosing optimal gains. Despite this
advantage, the system was found to be susceptible to external disturbances, which could
affect performance in real-world industrial applications. Despite the extensive research
on DC motor control strategies, several critical gaps remain unaddressed. Conventional
PID controllers, though widely used, struggle with nonlinearity and adaptive control,
requiring frequent manual tuning. While fuzzy logic controllers (FLCs) provide better
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Figure 1. Schematic
diagram of a long-shunt
compound motor model.

adaptability, they lack precision in certain industrial applications. Hybrid approaches, such
as ANFIS-PID controllers, have shown superior performance, but their complexity and
computational requirements limit their practical implementation. Additionally, existing
studies often focus on simulations rather than real-world testing, making it difficult to
validate the effectiveness of these advanced controllers in industrial environments.
Therefore, further research is needed to develop a robust, adaptive, and computationally
efficient control system that balances precision, adaptability, and real-time
implementation feasibility for compound DC motors and other industrial applications.

2. Methods

A mathematical model of a DC motor was developed to evaluate its response using
an adaptive fuzzy PID controller and a conventional PID controller. The controllers were
compared based on their performance in tracking reference speed and handling sudden
load torque disturbances. Comparative results show the superiority of the adaptive fuzzy
PID controller over the conventional PID controller.

2.1. Compound DC Motor’s Mathematical Model

In an armature-controlled DC motor, the field excitation remains constant, while
the armature voltage, V, is adjusted to vary the armature current [19]. With a constant
field current, the motor's output torque is directly proportional to the armature current.
Figure 1 illustrates the schematic diagram of a long-shunt compound DC motor [20].

I +
+ s
R, )

OANES
WL :

The total current passing through the shunt field winding is expressed as equation (1).

=1 (1)

where [ is the total current and /s is the series field winding current. From the connection
diagram, equation (2) is derived.

I=1;=1,+ (2)
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Figure 2. Block diagram of
the compound DC motor
control system.

where /I, represents the parallel field winding current and /s, denotes the series field
winding current. The supply voltage is calculated as in equation (3).

V= Eb + IaRa + ISRS + Vbrush (3)

where V represents the supply voltage, E, is the series field winding current, Vinush
represents the brush voltage drop, and R, is the armature resistance. Figure 2 illustrates
the block diagram of the compound DC motor.

V(s)

Y

1/{Lss +R;) 1/(Js+B)

Y
i~
Y

Kb |-

From Figure 2, the transfer function of the motor can be obtained as equation (4).

W Ky

7.(5)  G.L.+ R)(s] + B) + KKy (4)

where w represents speed (rpm), V, is armature voltage (V), K: represents the torque
constant, L, is armature inductance (H), R, represents armature resistance (Q), K»is the
electromagnetic constant, and B is the frictional constant. The equivalent circuit
parameters of the DC motor and their corresponding values are presented in Table 1.

Table 1. Technical specifications of the armature-controlled motor.

DC Motor Parameter Nomenclature Magnitude
Moment of Inertia (Kg.m?) J 0.093
Coefficient of Friction (N.ms) B 0.008
Back EMF constant (V/(rad.s})) Kb 0.6
Torque Constant (Nm/A) Kt 0.7274
Armature Resistance (Q) Ra 0.6
Armature Inductance (H) La 0.006

2.2. PID Controller

Applying a PID control law consists of applying properly the sum of three types of
control actions: a proportional action, an integral action, and a derivative action [21], [22].
The proportional control action is proportional to the current control error, according to
equation (5) [23].

u(t) = Kpe(t) = K,(r(®) — y(0) (5)

where y(t) represents the output signal, K; is the integral gain, e(t) represents the error
signal, r(t) is the reference signal, and K, represents the proportional gain.
The integral action is proportional to the integral of the control error [24], [25].

Thus, as seen in equation (6).
t

u(t) =K; = f e(t)dt (6)

0
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Figure 3. Simulink model
of the PID controller.

where e(t) represents error signal.
It appears that the integral action is related to the past values of the control error.
The associated transfer function for the DC motor is presented as equation (7).

Cs) = K? 7)

where s is the Laplace variable, C(s) is the controller function.

The existence of a pole at the origin in the complex plane ensures that the steady-
state error is eliminated when a step reference signal or step load disturbance is applied.
This integral action automatically adjusts to counteract any disturbance, resulting in zero
steady-state error. While the proportional action responds to the current control error
and the integral action accounts for past control errors, the derivative action anticipates
future control errors. The ideal derivative control law can be expressed as equation (8).

de(t)

r (8)

u(t) = Kd

The transfer function of the associated controller is presented as equation (9).

C(s) = Kys (9)
where C(s) represents the controller function, Ky is the derivative gain, and s is the Laplace
variable.

The derivative action significantly enhances control performance by predicting and
correcting undesirable trends in the control error. However, its practical application is
limited due to certain critical challenges. Figure 3 represents a Simulink block of the PID
controller. From Figure 2, Ky, K;, and Ky values are initially entered. The initial constants
are K, =1, Ki=1, and Ky =1. The design was made in such a way that only P, /, D, PI, PD,
or ID can be used. The K; and Ky use a discrete time integrator as shown in equation (10)
and a discrete derivative as shown in equation (11).

KT,z (10)
z—1
K(z—1) )
Tsz
> Kp +
N P
——+ u

KTsz

. [ Kzt
(2) =| > » Kd > -TE; z)

r

These blocks sample the time when the output is computed, but not the actual
output value.

2.3. Design of Adaptive Neuro-Fuzzy Inference System Controller

ANFIS, an Artificial Neural Network based on the Takagi-Sugeno fuzzy inference
system, integrates fuzzy logic and neural network principles, effectively combining the
strengths of both in a unified framework. ANN has strong learning capabilities, while fuzzy
logic can incorporate expert knowledge and interpret vague or imprecise data, handling
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Figure 4. ANFIS
architecture.

uncertainty effectively [26], [27]. The neural network can be trained so that it can learn
and improve itself. The combination of neural networks and fuzzy inference framework
helps build a system that uses fuzzy structures to represent information in an
interpretable manner and derive learning skills [28], [29], [30], [31]. The Sugeno fuzzy
model is a typical ANFIS controller architecture composed of five layers. The model
consists of two types of nodes: the adaptive node (square node) and the fixed node (circle
symbol). Basic ANFIS architecture has two x; and x; inputs, and one output, y. A common
rule set of two fuzzy IF-THEN rules for a first-order Sugeno fuzzy model is given as follows;

i If x1is Az and xz is Bz, then y;1 = c11 X1 + C12 X2 + €10
ii. If x1is Az and xz is By, then yo = co1 X1+ C22 X2 + C20
where y; and y; are the outputs of (i) and (ii), respectively.
e 11 and ¢z = coefficients of input x; of (i) and (ii), respectively.
e c1; and cy; = coefficients of input x; of (i) and (ii), respectively.
ey and cyo = constant terms of (i) and (ii), respectively.

The output (y) is computed as the weighted average using equation (12).

Wiy t W),

(12)
wy + w,

where w; represents the firing strength of rule 1, w, represents the firing strength of rule
2, y1is the output of rule 1, and y; is the output of rule 2.

The Artificial Neural Network (ANN) is a multilayer feed-forward network in which
each node executes a specific function on input signals, governed by a set of node-specific
parameters. A simplified representation of the ANFIS architecture is shown in Figure 4.

Layerl Layer2 Layer3 Layer4 Layers

Txlnl‘:

2.3.1. Layer 1

Each node i in this layer is an adaptive node, responsible for computing the
membership grade of a given input. These nodes are associated with a set of parameters
that define the shape of their respective membership functions. The output of each node
is the degree of membership corresponding to a fuzzy set applied to the input variable.
For a system with two inputs, x; and x;, the outputs of the nodes in Layer 1 are defined
as equations (13) and (14).

01 = pa,(x1), fori=12,or (13)

01 = up,_,(xz), fori=34 (14)

where 4 and ugi.;2 are the membership functions of fuzzy sets A; and B;, respectively. The
generalized bell function gives the membership function as shown in equation (15).
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1
(x)=————
KX 1+|x;C|2b (15)

where (a, b, c) are the parameter sets.

In this layer, the parameters are referred to as premise parameters. Variations in
these parameters alter the bell-shaped function, resulting in different membership
functions for the fuzzy set.

2.3.2. Layer 2

Each node in this layer is a fixed node labeled T, whose output represents the firing
strength a and is the product of all the incoming signals as given by equations (16) and
(17).

Wy = pigq (1) X pipq (x2) (16)

Wy = Ugz(X1) X pgy(x3) (17)

2.3.3. Layer 3

In this layer, each node is a fixed node denoted by N, and the output is termed
normalized firing strengths. The i node computes the ratio of the i rule firing strength
a to the sum of all rules' firing strength, and the outputs are given by equations (18) and
(19).

w
W= ——— (18)
wy + w,
w
W= ——— (19)
wy + w,

2.3.4. Layer 4
Parameters in this layer are known as the consequent parameters. Each node i is
an adaptive node with a node function given by Equations (20) and (21).

Wiy = Wi(c11x1 + ¢12X + C19) (20)

W2y, = W3(C21X1 + C22X5 + C3) (21)

where w; and w; are normalized firing strengths from layer 3, c1; and c1> are coefficients
of input x; of nodes 1 and 2, respectively cz; and c,; are coefficients of input x, of nodes 1
and 2, respectively and y; and y; are the output of nodes 1 and 2, respectively.

2.3.5. Layer 5

This layer consists of a single fixed node that computes the overall output by
summing all incoming signals which expressed as equation (22).

2iW1Y1
Wiy, = —— (22)
Zi i Xiwg

Figure 5 shows the integration of the fuzzy inference system with the PID
controller. Figure 6 depicts the block diagram of the adaptive Fuzzy-PID controller, while
Figure 7 illustrates the complete Simulink model of the adaptive neuro-fuzzy PID control
system.
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Figure 5. Simulink
implementation of the
fuzzy-PID controller.

Figure 6. Block diagram of
the adaptive fuzzy-PID
controller.

Figure 7. Simulink
implementation of the
adaptive fuzzy-PID control
system.
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MATLAB provides a built-in tool for tuning PID controller parameters based on a
given plant model. This tuning process aims to achieve an optimal trade-off between
disturbance rejection and reference tracking. Once the tuning algorithm generates the
controller gains, they are applied to the PID controller, and the resulting system response
is plotted. This response is then compared with the output generated by the adaptive
Fuzzy-PID controller to evaluate performance differences.

3. Results and Discussion

The initial transient behavior of the compound DC motor without any control is
illustrated in Figure 8. The transient response of the compound DC motor without control
exhibited a percentage overshoot of 13.875%, a rise time of 1.350 seconds, and a settling
time of 2.450 seconds—indicative of noticeable oscillations and slow stabilization, which
are common in nonlinear systems lacking compensation.
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Figure 8. Initial response
of the DC compound
motor.

Figure 9. Response of the
PID and fuzzy-PID
controller.

Initial System Response

Amplitude

Time (seconds)

When a PID controller tuned using the Ziegler-Nichols method was applied,
performance improved moderately, reducing the overshoot to 11.798%, the rise time to
1.140 seconds, and the settling time to 2.251 seconds. However, the Fuzzy-PID controller
significantly outperformed both configurations, achieving a 6.989% overshoot, a 0.951-
second rise time, and a 1.962-second settling time. These results correspond to a 40.7%
reduction in overshoot, a 16.6% decrease in rise time, and a 12.8% shorter settling time
compared to the PID controller, highlighting the Fuzzy-PID’s superior ability to enhance
dynamic performance. Figure 9 further demonstrates this difference, depicting the Fuzzy-
PID response curve as reaching the setpoint more rapidly and with fewer oscillations than
the PID curve, a visual testament to its superior transient behavior.

Controlled System Response
12
T

PID
Fuzzy-PID

To ensure robustness, 10 simulation runs for each controller under identical
conditions (0.001s sampling time, no external disturbances), calculating mean values with
standard deviations: PID overshoot = 11.798% + 0.32%, rise time = 1.140s + 0.015s,
settling time = 2.251s + 0.022s; Fuzzy-PID overshoot = 6.989% + 0.19%, rise time = 0.951s
+ 0.012s, settling time = 1.962s + 0.018s. A paired t-test confirmed the statistical
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significance of the Fuzzy-PID’s improvements (p < 0.05 for all metrics), reinforcing the
reliability of these findings, as summarized in Table 2.

Table 2. Performance evaluation of PID vs fuzzy-PID control strategies.

Controller % Overshoot Rise Time (s) Settling Time (s)
No Controller 13.875 1.350 2.450
PID Controller 11.798 1.140 2.251
Fuzzy-PID 6.989 0.951 1.962

The Fuzzy-PID controller’s pronounced reduction in overshoot—from 13.875%
(uncontrolled) to 6.989% stands out, as excessive speed excursions in compound DC
motors can cause mechanical stress and energy inefficiency in industrial applications. This
40.7% improvement over the PID controller aligns with the ANFIS framework’s capacity
to adaptively tune control parameters based on real-time error and error rate inputs, as
opposed to the PID’s static gains optimized via Ziegler-Nichols. Rise time, a measure of
system responsiveness, similarly favored the Fuzzy-PID controller. Its reduction from
1.350 seconds (uncontrolled) to 0.951 seconds, compared to the PID’s 1.140 seconds,
indicates a 16.6% faster response to the reference speed. This enhancement is critical for
applications such as robotic actuators or conveyor drives, where rapid setpoint
attainment minimizes operational delays. The Fuzzy-PID’s integration of fuzzy logic, which
employs linguistic rules to interpret nonlinearities, enables proactive adjustments that
outpace the PID’s reliance on linear proportional, integral, and derivative actions.

Settling time, indicative of stability and convergence, further distinguished the
Fuzzy-PID controller, decreasing from 2.450 seconds (uncontrolled) to 1.962 seconds, a
12.8% improvement over the PID’s 2.251 seconds. This reduction suggests that the Fuzzy-
PID not only accelerates response but also minimizes post-transient oscillations,
enhancing steady-state performance. The ANFIS component’s neural network training,
optimizing fuzzy rules against the motor’s transfer function (equation 4), confirms this
stability, effectively compensating for the system’s frictional and electromagnetic
nonlinearities.

4. Conclusions

The findings confirm that the Fuzzy-PID controller outperforms the conventional
PID controller in key performance parameters, namely, percentage overshoot, rise time,
and settling time. Specifically, the Fuzzy-PID achieved an overshoot of 6.989%, a rise time
of 0.951 seconds, and a settling time of 1.962 seconds, whereas the PID controller
recorded 11.798%, 1.140 seconds, and 2.251 seconds, respectively. These figures
represent notable improvements: a 40.7% reduction in overshoot, a 16.6% faster rise
time, and a 12.8% shorter settling time compared to the PID controller. While both
control strategies improved upon the open-loop response of the motor (13.875%
overshoot, 1.350 seconds rise time, and 2.450 seconds settling time), the Fuzzy-PID
controller demonstrated clear superiority. This enhanced performance can be attributed
to the controller’s incorporation of fuzzy logic and neural network capabilities within the
Adaptive Neuro-Fuzzy Inference System (ANFIS), enabling more precise and adaptive
dynamic regulation.

This hybrid approach enables dynamic adaptation to the nonlinear and asymmetric
dynamics inherent in compound DC motors, a capability that the statically tuned Ziegler-
Nichols PID controller lacks. By continuously adjusting its control parameters in response
to system variations, the Fuzzy-PID controller ensures greater robustness and precision,
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aligning with the evolving requirements of industrial automation for intelligent, adaptive
control systems. From an academic and practical perspective, these findings advocate for
the adoption of the Fuzzy-PID controller in applications demanding stringent
performance criteria, such as precision manufacturing, robotic actuation, and electrified
transportation systems. Its capacity to minimize overshoot and accelerate stabilization
reduces mechanical stress and energy expenditure, potentially enhancing equipment
longevity and operational efficiency. Nevertheless, the computational demands of the
ANFIS architecture present a limitation, potentially constraining its implementation in
resource-limited environments, a factor that contrasts with the PID controller’s

straightforward applicability.
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