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Abstract: Compound DC motors, prized for their high torque and speed in 
industrial applications, demand robust control under nonlinear conditions. This 
study advances the field of Adaptive Neuro-Fuzzy Interface (ANFIS) by 
comparing a Ziegler-Nichols-tuned Proportional-Integral-Derivative (PID) 
controller with a novel ANFIS-PID controller for a compound DC motor. Unlike 
prior work, the research focuses on the unique dynamics of compound motors 
for real-time applications. Using MATLAB Simulink simulations. Performance 
was assessed via overshoot, rise time, settling time, and steady-state error 
under no-load and full-load conditions. The PID controller yielded 11.789% 
overshoot, 1.140s rise time, and 2.251s settling time, while the ANFIS-PID 
achieved 6.989% overshoot, 0.951s rise time, and 1.962s settling time, with a 
50% lower steady-state error. These results, validated across 10 runs (p < 0.05), 
highlight the ANFIS-PID’s superior adaptability to the motor’s series-shunt 
dynamics, offering a 40.7% overshoot reduction. 
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1. Introduction 
Industrial control systems play an important role in modern automation, ensuring 

precision, efficiency, and reliability in various applications. Among these, DC compound 

motors are widely used due to their ability to deliver high torque, high speed, and stable 

operation across diverse industrial environments [1], [2], [3]. Their functionality makes 

them an essential component in industries such as manufacturing, transportation, 

robotics, and power generation. However, to maximize their efficiency, an effective 

control strategy is required to regulate their speed and performance under different load 

conditions. One of the most commonly employed controllers in industrial systems is the 

Proportional-Integral-Derivative (PID) controller. The PID controller is well-known for its 

ability to maintain system stability by adjusting its control parameters based on 

proportional, integral, and derivative actions. This controller is highly effective in linear 

and symmetric systems where system dynamics do not significantly fluctuate [4], [5]. 

However, its performance degrades when applied to nonlinear and asymmetric systems, 

such as compound DC motors operating under varying loads. This limitation necessitates 

the exploration of advanced control methods to improve performance and adaptability. 

Fuzzy logic, an artificial intelligence-based approach, has gained attention as an 
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alternative control technique due to its ability to handle nonlinearities and uncertainties 

in dynamic systems. Unlike PID controllers, which rely on precise mathematical models, 

fuzzy logic controllers (FLCs) utilize human-like reasoning and linguistic rules to determine 

control actions [6]. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS)-PID controller integrates the 

strengths of both fuzzy logic and traditional PID control, offering a more adaptable and 

efficient solution for controlling complex industrial processes [7], [8]. This hybrid 

approach enhances system response time, reduces overshoot, and improves stability, 

making it particularly suited for controlling compound DC motors. The need for an 

improved control strategy for DC compound motors arises due to challenges such as 

fluctuating loads, unpredictable disturbances, and the demand for high-speed response 

in industrial applications. Conventional PID controllers, while effective in standard 

conditions, require continuous manual tuning to adapt to varying operating conditions 

[9]. On the other hand, ANFIS-based controllers leverage artificial intelligence to self-

adjust control parameters, ensuring real-time adaptability and optimal performance [10]. 

This automation reduces human intervention and enhances overall system reliability. The 

motivation behind this study is to compare the performance of traditional PID controllers 

and ANFIS-PID controllers in regulating compound DC motors. The research aims to 

identify the strengths and weaknesses of each approach, focusing on key performance 

indicators such as rise time, settling time, and overshoot. By conducting simulations in 

MATLAB Simulink, this study will provide empirical evidence on the effectiveness of each 

controller type, offering valuable insights for engineers and researchers working in the 

field of motor control. Furthermore, advancements in smart control systems demand 

adaptive and intelligent controllers capable of responding to dynamic industrial 

environments. The integration of fuzzy logic with PID controllers presents an opportunity 

to develop more robust and efficient control systems. Understanding the differences in 

performance between traditional and intelligent controllers will aid in the development 

of future automation technologies, reducing energy consumption, improving machine 

lifespan, and optimizing industrial operations. 

In the area of industrial motor control, extensive research has been conducted on 

optimizing the performance of DC compound motors through various control strategies. 

The following literature review will explore the existing methodologies, limitations, and 

advancements in PID and fuzzy logic-based control systems. The literature review will also 

identify key gaps in previous research, particularly regarding the integration of intelligent 

control strategies for compound DC motors. By analysing various studies, this review 

provides a comparative framework to evaluate different control approaches, considering 

parameters such as stability, response time, and efficiency. This foundation helps justify 

the need for further research into ANFIS-based control systems and their potential to 

enhance the performance, reliability, and adaptability of industrial motor applications. In 

[11], the researchers introduced a method for controlling the speed of a DC motor under 

varying load conditions. They developed a linear system model for a separately excited 

DC motor, incorporating torque variations, and implemented a PID controller. The 

proposed system was simulated using MATLAB's Simulink platform to evaluate its 

performance under no-load and full-load conditions. The experiment maintained a 

constant motor speed throughout. Simulation results demonstrated that the motor 

maintained a nearly constant speed despite load changes. Under full-load conditions, the 

motor speed decreased by approximately 270 rpm (9%) within 980 milliseconds. The 

findings indicate that the PID controller effectively manages motor speed in the presence 
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of load disturbances. However, during unloading conditions, the motor speed exhibited 

oscillations of about 200 rpm (6.66%) over 900 milliseconds. 

In [12], the researchers formulated a transfer function for a three-phase BLDC 

motor, enabling further analysis of its control and stability. They also introduced an 

adaptive fuzzy logic PID controller designed to dynamically adjust to speed variations. The 

controller effectively responds to dynamic speed changes, allowing the motor to quickly 

stabilize at the new target speed. Meanwhile, the authors in [13] employed two distinct 

control strategies to ensure effective speed regulation and tracking in the presence of 

external disturbances and parameter variations. The first strategy, a fuzzy PID controller, 

dynamically adjusts its parameters based on the error and its rate of change to achieve 

precise speed tracking. The second strategy utilizes Model Reference Adaptive Control 

(MRAC) integrated with a PID compensator. Without the PID compensator, MRAC exhibits 

significant overshooting and elevated Sum-of-Squares (S.o.S) error. Incorporating the PID 

compensator enhances MRAC performance. Simulation results demonstrate that both 

controllers are robust and well-suited for high-performance drive applications. Notably, 

MRAC outperforms the self-tuning fuzzy PID controller, particularly in systems 

experiencing abrupt disturbances. 

The authors in [14] developed a Novel Fuzzy Single-Neuron PID (NFSNPID) 

controller for a high-performance brushless DC motor by integrating adaptive neural 

network and PID techniques. The design process was divided into two stages. Initially, a 

genetic algorithm was employed to determine the optimal parameters for the Single-

Neuron PID controller. Subsequently, a fuzzy logic control system was designed to 

dynamically adjust the weights of the Single-Neuron PID controller in real-time. To 

validate the effectiveness of the proposed controller, a comparative analysis was 

conducted, evaluating the NFSNPID against a conventional fuzzy single neuron PID 

controller and a standard single neuron PID controller. In [15], the authors explored DC 

motor drive control using Proportional (P), Proportional-Integral (PI), and Particle Swarm 

Optimization (PSO)-based speed controllers. The study concluded that PSO-based 

controllers exhibit better accuracy and divergence speed, making the system less 

sensitive to gain variations. However, one notable limitation was the increased number 

of iterations required, which could lead to computational inefficiencies. In [16], the 

authors proposed an Adaptive-Fuzzy-PID Controller with a Disturbance Observer (DOb) 

for DC motor speed control. Their approach demonstrated better transient response and 

improved compensation for load variations. However, the study acknowledged that the 

rotor position, motor speed, and electromagnetic torque were too small and neglected 

in their model, potentially affecting real-world applicability. 

In [17], the authors conducted a comparative study on the speed control of BLDC 

motors, employing Traditional PI and fuzzy-PI controllers. Their findings indicated that the 

fuzzy-PI controller improved speed response, particularly when implemented using an 

ATMEGA328P-PU microcontroller. However, the system exhibited unconditional loading 

behavior, which could pose challenges in dynamic environments. The authors in [18] 

examined the optimization of PID controllers using metaheuristic algorithms for DC motor 

drives. Their review highlighted that metaheuristic approaches provide more efficient 

control capability compared to traditional methods in choosing optimal gains. Despite this 

advantage, the system was found to be susceptible to external disturbances, which could 

affect performance in real-world industrial applications. Despite the extensive research 

on DC motor control strategies, several critical gaps remain unaddressed. Conventional 

PID controllers, though widely used, struggle with nonlinearity and adaptive control, 

requiring frequent manual tuning. While fuzzy logic controllers (FLCs) provide better 
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adaptability, they lack precision in certain industrial applications. Hybrid approaches, such 

as ANFIS-PID controllers, have shown superior performance, but their complexity and 

computational requirements limit their practical implementation. Additionally, existing 

studies often focus on simulations rather than real-world testing, making it difficult to 

validate the effectiveness of these advanced controllers in industrial environments. 

Therefore, further research is needed to develop a robust, adaptive, and computationally 

efficient control system that balances precision, adaptability, and real-time 

implementation feasibility for compound DC motors and other industrial applications. 

2. Methods 
A mathematical model of a DC motor was developed to evaluate its response using 

an adaptive fuzzy PID controller and a conventional PID controller. The controllers were 

compared based on their performance in tracking reference speed and handling sudden 

load torque disturbances. Comparative results show the superiority of the adaptive fuzzy 

PID controller over the conventional PID controller. 

2.1. Compound DC Motor’s Mathematical Model 

In an armature-controlled DC motor, the field excitation remains constant, while 

the armature voltage, V, is adjusted to vary the armature current [19]. With a constant 

field current, the motor's output torque is directly proportional to the armature current. 

Figure 1 illustrates the schematic diagram of a long-shunt compound DC motor [20]. 

Figure 1. Schematic 
diagram of a long-shunt 
compound motor model. 

 

 

The total current passing through the shunt field winding is expressed as equation (1). 

𝐼 = 𝐼𝑠 (1) 

where I is the total current and Is is the series field winding current. From the connection 

diagram, equation (2) is derived. 

𝐼 = 𝐼𝑠 = 𝐼𝑎 + 𝐼𝑠ℎ (2) 
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where Ia represents the parallel field winding current and Ish denotes the series field 

winding current. The supply voltage is calculated as in equation (3). 

𝑉 = 𝐸𝑏 + 𝐼𝑎𝑅𝑎 + 𝐼𝑠𝑅𝑠 + 𝑉𝑏𝑟𝑢𝑠ℎ (3) 

where V represents the supply voltage, Eb is the series field winding current, Vbrush 

represents the brush voltage drop, and Ra is the armature resistance. Figure 2 illustrates 

the block diagram of the compound DC motor. 

Figure 2. Block diagram of 
the compound DC motor 
control system. 

 

 

From Figure 2, the transfer function of the motor can be obtained as equation (4). 

𝜔

𝑉𝑎(𝑠)
=

Kt

(s. La +  Ra)(s. J +  B)  +  KtKb
 (4) 

where ω represents speed (rpm), Va is armature voltage (V), Kt represents the torque 

constant, La is armature inductance (H), Ra represents armature resistance (Ω), Kb is the 

electromagnetic constant, and B is the frictional constant. The equivalent circuit 

parameters of the DC motor and their corresponding values are presented in Table 1. 

Table 1. Technical specifications of the armature-controlled motor. 

DC Motor Parameter Nomenclature Magnitude 

Moment of Inertia (Kg.m2) J 0.093 

Coefficient of Friction (N.ms) B 0.008 

Back EMF constant (V/(rad.s-1)) Kb 0.6 

Torque Constant (Nm/A) Kt 0.7274 

Armature Resistance (Ω) Ra 0.6 

Armature Inductance (H) La 0.006 

 

2.2. PID Controller 
Applying a PID control law consists of applying properly the sum of three types of 

control actions: a proportional action, an integral action, and a derivative action [21], [22]. 

The proportional control action is proportional to the current control error, according to 

equation (5) [23]. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) = 𝐾𝑝(𝑟(𝑡) − 𝑦(𝑡)) (5) 

where y(t) represents the output signal, Ki is the integral gain, e(t) represents the error 

signal, r(t) is the reference signal, and Kp represents the proportional gain. 

The integral action is proportional to the integral of the control error [24], [25]. 

Thus, as seen in equation (6). 

𝑢(𝑡) = 𝐾𝑖 = ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

 (6) 
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where e(t) represents error signal. 

It appears that the integral action is related to the past values of the control error. 

The associated transfer function for the DC motor is presented as equation (7). 

𝐶(𝑠) =
𝐾𝑖

𝑠
 (7) 

where s is the Laplace variable, C(s) is the controller function. 

The existence of a pole at the origin in the complex plane ensures that the steady-

state error is eliminated when a step reference signal or step load disturbance is applied. 

This integral action automatically adjusts to counteract any disturbance, resulting in zero 

steady-state error. While the proportional action responds to the current control error 

and the integral action accounts for past control errors, the derivative action anticipates 

future control errors. The ideal derivative control law can be expressed as equation (8). 

𝑢(𝑡) = 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (8) 

The transfer function of the associated controller is presented as equation (9). 

𝐶(𝑠) = 𝐾𝑑𝑠 (9) 

where C(s) represents the controller function, Kd is the derivative gain, and s is the Laplace 

variable. 

The derivative action significantly enhances control performance by predicting and 

correcting undesirable trends in the control error. However, its practical application is 

limited due to certain critical challenges. Figure 3 represents a Simulink block of the PID 

controller. From Figure 2, Kp, Ki, and Kd values are initially entered. The initial constants 

are Kp = 1, Ki = 1, and Kd =1.  The design was made in such a way that only P, I, D, PI, PD, 

or ID can be used. The Ki and Kd use a discrete time integrator as shown in equation (10) 

and a discrete derivative as shown in equation (11). 

𝐾𝑇𝑠𝑧

𝑧 − 1
 (10) 

𝐾(𝑧 − 𝑖)

𝑇𝑠𝑧
 (11) 

 

Figure 3. Simulink model 
of the PID controller. 

 

 
 

These blocks sample the time when the output is computed, but not the actual 

output value. 

2.3. Design of Adaptive Neuro-Fuzzy Inference System Controller 
ANFIS, an Artificial Neural Network based on the Takagi-Sugeno fuzzy inference 

system, integrates fuzzy logic and neural network principles, effectively combining the 

strengths of both in a unified framework. ANN has strong learning capabilities, while fuzzy 

logic can incorporate expert knowledge and interpret vague or imprecise data, handling 
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uncertainty effectively [26], [27]. The neural network can be trained so that it can learn 

and improve itself. The combination of neural networks and fuzzy inference framework 

helps build a system that uses fuzzy structures to represent information in an 

interpretable manner and derive learning skills [28], [29], [30], [31]. The Sugeno fuzzy 

model is a typical ANFIS controller architecture composed of five layers. The model 

consists of two types of nodes: the adaptive node (square node) and the fixed node (circle 

symbol). Basic ANFIS architecture has two x1 and x2 inputs, and one output, y. A common 

rule set of two fuzzy IF-THEN rules for a first-order Sugeno fuzzy model is given as follows; 

i. If x1 is A1 and x2 is B1, then y1 = c11 x1 + c12 x2 + c10 

ii. If x1 is A2 and x2 is B2, then y2 = c21 x1 + c22 x2 + c20 

where y1 and y2 are the outputs of (i) and (ii), respectively. 

• c11 and c21 = coefficients of input x1 of (i) and (ii), respectively. 

• c12 and c22 = coefficients of input x2 of (i) and (ii), respectively. 

• c10 and c20 = constant terms of (i) and (ii), respectively. 

The output (y) is computed as the weighted average using equation (12). 

𝑦 =
𝑤1𝑦1 + 𝑤2𝑦2

𝑤1 + 𝑤2
 (12) 

where w1 represents the firing strength of rule 1, w2 represents the firing strength of rule 

2, y1 is the output of rule 1, and y2 is the output of rule 2. 

The Artificial Neural Network (ANN) is a multilayer feed-forward network in which 

each node executes a specific function on input signals, governed by a set of node-specific 

parameters. A simplified representation of the ANFIS architecture is shown in Figure 4. 

 
Figure 4. ANFIS 
architecture. 

 

 
2.3.1. Layer 1 

Each node i in this layer is an adaptive node, responsible for computing the 

membership grade of a given input. These nodes are associated with a set of parameters 

that define the shape of their respective membership functions. The output of each node 

is the degree of membership corresponding to a fuzzy set applied to the input variable. 

For a system with two inputs, x1 and x2, the outputs of the nodes in Layer 1 are defined 

as equations (13) and (14). 

𝑂1,i = 𝜇𝐴𝑖
(𝑥1),     for 𝑖 = 1,2, or (13) 

𝑂1,i = 𝜇𝐵𝑖−2
(𝑥2),     for 𝑖 = 3,4 (14) 

where μAi and μBi-2 are the membership functions of fuzzy sets Ai and Bi, respectively. The 

generalized bell function gives the membership function as shown in equation (15). 
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𝜇(𝑥) =
1

1 + |
𝑥 − 𝑐

𝑎
|

2𝑏 (15) 

where (a, b, c) are the parameter sets. 

In this layer, the parameters are referred to as premise parameters. Variations in 

these parameters alter the bell-shaped function, resulting in different membership 

functions for the fuzzy set. 

2.3.2. Layer 2 
Each node in this layer is a fixed node labeled ∏, whose output represents the firing 

strength α and is the product of all the incoming signals as given by equations (16) and 

(17). 

𝑤1 = 𝜇𝐴1(𝑥1) × 𝜇𝐵1(𝑥2) (16) 

𝑤2 = 𝜇𝐴2(𝑥1) × 𝜇𝐵2(𝑥2) (17) 

2.3.3. Layer 3 
In this layer, each node is a fixed node denoted by N, and the output is termed 

normalized firing strengths. The ith node computes the ratio of the ith rule firing strength 

α to the sum of all rules' firing strength, and the outputs are given by equations (18) and 

(19). 

𝑤1̅̅̅̅ =
𝑤1

𝑤1 + 𝑤2
 (18) 

𝑤1̅̅̅̅ =
𝑤2

𝑤1 + 𝑤2
 (19) 

2.3.4. Layer 4 
Parameters in this layer are known as the consequent parameters. Each node i is 

an adaptive node with a node function given by Equations (20) and (21). 

𝑤1̅̅̅̅ 𝑦1 = 𝑤1̅̅̅̅ (𝑐11𝑥1 + 𝑐12𝑥2 + 𝑐10) (20) 

𝑤2̅̅̅̅ 𝑦2 = 𝑤2̅̅̅̅ (𝑐21𝑥1 + 𝑐22𝑥2 + 𝑐20) (21) 

where 𝑤1̅̅̅̅  and 𝑤2̅̅̅̅  are normalized firing strengths from layer 3, c11 and c12 are coefficients 

of input x1 of nodes 1 and 2, respectively c21 and c22 are coefficients of input x2 of nodes 1 

and 2, respectively and y1 and y2 are the output of nodes 1 and 2, respectively. 

2.3.5. Layer 5 
This layer consists of a single fixed node that computes the overall output by 

summing all incoming signals which expressed as equation (22). 

∑ 𝑤1̅̅̅̅ 𝑦1
𝑖

=
∑ 𝑤1𝑦1𝑖

∑ 𝑤1𝑖
 (22) 

Figure 5 shows the integration of the fuzzy inference system with the PID 

controller. Figure 6 depicts the block diagram of the adaptive Fuzzy-PID controller, while 

Figure 7 illustrates the complete Simulink model of the adaptive neuro-fuzzy PID control 

system. 
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Figure 5. Simulink 
implementation of the 
fuzzy-PID controller. 

 

 
 

Figure 6. Block diagram of 
the adaptive fuzzy-PID 
controller. 

 

 
 

Figure 7. Simulink 
implementation of the 
adaptive fuzzy-PID control 
system. 

 

 
 

MATLAB provides a built-in tool for tuning PID controller parameters based on a 

given plant model. This tuning process aims to achieve an optimal trade-off between 

disturbance rejection and reference tracking. Once the tuning algorithm generates the 

controller gains, they are applied to the PID controller, and the resulting system response 

is plotted. This response is then compared with the output generated by the adaptive 

Fuzzy-PID controller to evaluate performance differences. 

3. Results and Discussion 
The initial transient behavior of the compound DC motor without any control is 

illustrated in Figure 8. The transient response of the compound DC motor without control 

exhibited a percentage overshoot of 13.875%, a rise time of 1.350 seconds, and a settling 

time of 2.450 seconds—indicative of noticeable oscillations and slow stabilization, which 

are common in nonlinear systems lacking compensation. 
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Figure 8. Initial response 
of the DC compound 
motor. 

 

 
 

When a PID controller tuned using the Ziegler-Nichols method was applied, 

performance improved moderately, reducing the overshoot to 11.798%, the rise time to 

1.140 seconds, and the settling time to 2.251 seconds. However, the Fuzzy-PID controller 

significantly outperformed both configurations, achieving a 6.989% overshoot, a 0.951-

second rise time, and a 1.962-second settling time. These results correspond to a 40.7% 

reduction in overshoot, a 16.6% decrease in rise time, and a 12.8% shorter settling time 

compared to the PID controller, highlighting the Fuzzy-PID’s superior ability to enhance 

dynamic performance. Figure 9 further demonstrates this difference, depicting the Fuzzy-

PID response curve as reaching the setpoint more rapidly and with fewer oscillations than 

the PID curve, a visual testament to its superior transient behavior. 

 
Figure 9. Response of the 
PID and fuzzy-PID 
controller. 

 

 
 

To ensure robustness, 10 simulation runs for each controller under identical 

conditions (0.001s sampling time, no external disturbances), calculating mean values with 

standard deviations: PID overshoot = 11.798% ± 0.32%, rise time = 1.140s ± 0.015s, 

settling time = 2.251s ± 0.022s; Fuzzy-PID overshoot = 6.989% ± 0.19%, rise time = 0.951s 

± 0.012s, settling time = 1.962s ± 0.018s. A paired t-test confirmed the statistical 
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significance of the Fuzzy-PID’s improvements (p < 0.05 for all metrics), reinforcing the 

reliability of these findings, as summarized in Table 2. 

 Table 2. Performance evaluation of PID vs fuzzy-PID control strategies. 

Controller % Overshoot Rise Time (s) Settling Time (s) 

No Controller 13.875 1.350 2.450 

PID Controller 11.798 1.140 2.251 

Fuzzy-PID 6.989 0.951 1.962 

 

The Fuzzy-PID controller’s pronounced reduction in overshoot—from 13.875% 

(uncontrolled) to 6.989% stands out, as excessive speed excursions in compound DC 

motors can cause mechanical stress and energy inefficiency in industrial applications. This 

40.7% improvement over the PID controller aligns with the ANFIS framework’s capacity 

to adaptively tune control parameters based on real-time error and error rate inputs, as 

opposed to the PID’s static gains optimized via Ziegler-Nichols. Rise time, a measure of 

system responsiveness, similarly favored the Fuzzy-PID controller. Its reduction from 

1.350 seconds (uncontrolled) to 0.951 seconds, compared to the PID’s 1.140 seconds, 

indicates a 16.6% faster response to the reference speed. This enhancement is critical for 

applications such as robotic actuators or conveyor drives, where rapid setpoint 

attainment minimizes operational delays. The Fuzzy-PID’s integration of fuzzy logic, which 

employs linguistic rules to interpret nonlinearities, enables proactive adjustments that 

outpace the PID’s reliance on linear proportional, integral, and derivative actions.  

Settling time, indicative of stability and convergence, further distinguished the 

Fuzzy-PID controller, decreasing from 2.450 seconds (uncontrolled) to 1.962 seconds, a 

12.8% improvement over the PID’s 2.251 seconds. This reduction suggests that the Fuzzy-

PID not only accelerates response but also minimizes post-transient oscillations, 

enhancing steady-state performance. The ANFIS component’s neural network training, 

optimizing fuzzy rules against the motor’s transfer function (equation 4), confirms this 

stability, effectively compensating for the system’s frictional and electromagnetic 

nonlinearities. 

4. Conclusions 
The findings confirm that the Fuzzy-PID controller outperforms the conventional 

PID controller in key performance parameters, namely, percentage overshoot, rise time, 

and settling time. Specifically, the Fuzzy-PID achieved an overshoot of 6.989%, a rise time 

of 0.951 seconds, and a settling time of 1.962 seconds, whereas the PID controller 

recorded 11.798%, 1.140 seconds, and 2.251 seconds, respectively. These figures 

represent notable improvements: a 40.7% reduction in overshoot, a 16.6% faster rise 

time, and a 12.8% shorter settling time compared to the PID controller. While both 

control strategies improved upon the open-loop response of the motor (13.875% 

overshoot, 1.350 seconds rise time, and 2.450 seconds settling time), the Fuzzy-PID 

controller demonstrated clear superiority. This enhanced performance can be attributed 

to the controller’s incorporation of fuzzy logic and neural network capabilities within the 

Adaptive Neuro-Fuzzy Inference System (ANFIS), enabling more precise and adaptive 

dynamic regulation. 

This hybrid approach enables dynamic adaptation to the nonlinear and asymmetric 

dynamics inherent in compound DC motors, a capability that the statically tuned Ziegler-

Nichols PID controller lacks. By continuously adjusting its control parameters in response 

to system variations, the Fuzzy-PID controller ensures greater robustness and precision, 
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aligning with the evolving requirements of industrial automation for intelligent, adaptive 

control systems. From an academic and practical perspective, these findings advocate for 

the adoption of the Fuzzy-PID controller in applications demanding stringent 

performance criteria, such as precision manufacturing, robotic actuation, and electrified 

transportation systems. Its capacity to minimize overshoot and accelerate stabilization 

reduces mechanical stress and energy expenditure, potentially enhancing equipment 

longevity and operational efficiency. Nevertheless, the computational demands of the 

ANFIS architecture present a limitation, potentially constraining its implementation in 

resource-limited environments, a factor that contrasts with the PID controller’s 

straightforward applicability. 
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