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Abstract: Before installing a wind turbine, it's essential to conduct wind power 
forecasting to gauge the effectiveness of the wind power initiative. 
Conventionally, wind speed measurements have been conducted 
instantaneously between various points. These measurement points solely 
indicate the locations where wind turbines will be positioned. However, these 
locations might exhibit reduced wind speeds, potentially making them less 
suitable for the optimal placement of the wind turbine. To address location 
challenges, we suggest conducting wind power predictions in areas where wind 
measuring instruments are yet to be installed. The study relies on the 
instantaneous measurements already performed at the site set up at the Dedan 
Kimathi University of Technology. To this end, a wind power forecasting model 
has been created. Real-time data from the site was gathered via a wireless 
sensor node utilising the Internet of Things (IoT). Additionally, a machine 
learning prediction model based on time series analysis was developed. Our 
forecasts were moderately aligned with the testing values, showing seasonality 
throughout the year. Therefore, the developed machine learning model 
captured the underlying patterns, trends, and seasonality in the wind data, 
making its forecasts reliable. 
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1. Introduction 
Investments in wind energy are increasing [1]. Conventionally, wind turbines are 

placed where wind speed measurements are conducted [2]. However, this location might 

not have the highest wind speed across the surveyed area. Hence, it is necessary to 

forecast wind speeds in the surrounding areas, as they might have the potential to 

generate higher wind speeds. Moreover, wind power experiences fluctuations that are 

difficult to control [3]. Decreasing the variance involves consolidating power generation 

from numerous wind farms. An appropriate model first predicts wind speed. The 

forecasted wind speed is employed to estimate the anticipated wind power production 

for a particular wind farm, and the prediction outcome for a wind farm can also be utilised 

to predict regional output [4].  

 Several researchers have employed various wind prediction techniques [5], such 

as the Wind Atlas Analysis and Application Program [6]. It uses the linear atmospheric 

model to extend wind climate information within a specific area, considering factors such 
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as terrain features and surface roughness [7]. This model applies the linear aspects of the 

Navier-Stokes equations to compute wind velocities at various points. Wind atlas models 

rely on simplified assumptions and extrapolation techniques, leading to potential 

inaccuracies in predicting complex local wind patterns. Another prediction technique is 

computational fluid dynamics (CFD), which uses fluid dynamic equations to quantify wind 

climate [8]. CFD simulations require significant computational resources and time, making 

it challenging to efficiently perform large-scale and long-term wind energy assessments. 

LiDAR technology (light detection and ranging) is also used for prediction [9]. It uses the 

pulse from a laser to collect measurements, which can then be used to create 3D models 

and maps of objects and environments [10]. However, LiDAR devices have a small 

measurement range, resulting in limited spatial coverage.  

To overcome the existing gaps, this work proposes to employ machine learning 

techniques to improve forecasts. To this end, a model is developed that analyses wind 

data to make accurate predictions of future wind power generation using the ARIMA and 

SARIMAX models. 

The rest of this paper is structured as follows: Section 2 presents the methodology, 

highlights the wind data collection setup, and outlines the wind energy prediction 

methods employed in this study, ARIMA and SARIMAX. Section 3 provides the results and 

discussion of the model, including the selection of parameters, data cleaning procedures, 

and analytical techniques. Finally, Section 4 is the conclusion of the paper. 

2. Methods 
Data was collected using custom-built wireless sensor nodes in two stations located 

one hundred meters apart. The sensor nodes were fabricated using an Atmega 328P 

microcontroller and Xbee module, which communicated with each other via the I2C 

protocol. The sensor nodes were equipped with a ready-made anemometer and wind 

vane to measure speed and direction. The collected data was then transmitted wirelessly 

to a Raspberry Pi. The Raspberry Pi received the data from the two stations, formatted it, 

and sent it to an email. A wind power prediction model developed in this study is also 

presented. 

2.1. Wireless Sensor Node Fabrication 
The essential embedded systems and the assembly of the complete system device, 

forming a wireless sensor node aimed at collecting and transmitting data, were set up. 

Towers standing at a height of sixty meters at Dedan Kimathi University of Technology 

were used to install the necessary instruments for collecting wind data. The wireless data 

system was constructed based on the Atmega328P microcontroller due to its ease of 

prototyping, wireless communications through Bluetooth, and its wide range of libraries. 

This setup also had an Xbee radio capable of transmitting data via the ZigBee IEEE 

802.15.4 protocol to a central station a few meters away [11], as shown in Figure 1. The 

two stations were set up with a distance of about one hundred meters between them. 

Each station had: 

• Wind sensors for data collection; 

• Arduino ATmega328P microcontroller board. It acts as the interface 

between wind sensors, reading the digital signals produced by the sensors, 

scheduling sensor readings, and coordinating wireless communication; 

• Xbee is used to transmit data to the Raspberry Pi, which reads and formats 

the data and sends it to the receiving station. 



Waweru et al., Journal of Power, Energy, and Control (2024) vol. 1 no. 1 

50 

A ready-made cup anemometer and a wind vane were used to increase the 

accuracy of the data collected. The system in this study was based on an Atmega328P-AU 

microcontroller. The system also had an XBee radio capable of transmitting data via the 

ZigBee IEEE 802.15.4 protocol to a central station one hundred meters away [12]. The 

system was then programmed to understand the signals from sensors, save, display on 

the screen, and transmit wind data to the email for presentation. This program was 

written in a C/C++ development environment. The sensors used needed to communicate 

via the I2C protocol [13]. Sensor pins and addresses were first defined. Their addresses 

were assigned, and the necessary sensor libraries were integrated into the program. The 

initial configurations were set up within a function called only once. Sensor interrupts 

were specified, internal resistors were activated, sensors were initialised, and serial 

communication was activated. The iteration process was managed within the primary 

loop function. Throughout the iteration, the program monitored the passage of time. 

Sensors were programmed to transmit data via serial communication immediately upon 

receiving it. Calibration details for the sensors were also accounted for during this 

process. The wind vane sensor was adjusted to record the wind vane tail direction and 

transmit the data serially. The declination angle of the wind vane was accounted for by 

calibration using the tunnel [14]. The speed sensors provided instantaneous revolutions 

per second. The system was programmed to gather data samples every five seconds and 

transmit the averaged samples after sixty seconds. 

2.2. Wind Data Collection 
The collected data from the two stations was transmitted, with each station having 

the speed and direction of the wind. The test IEEE 802.15.4 sink node, positioned a 

hundred meters away, excellently received the data every sixty seconds. The collected 

data represents the actual values of wind speed and direction. In time series, they are 

referred to as observed values. It includes the combined effects of the trend, seasonality, 

and any random fluctuations or noise in the data. Figure 1 shows the flowchart of the 

data collection setup. 

 

Figure 1. Flowchart of data 
collection setup. 

 

 
 

The data from stations 1 and 2 was recorded, including date, time, speed, and 

direction. Table 1 shows a sample of data taken over five minutes. Our data was collected 

for one year, from January 2018 to 2018. 
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Table 1. Data sample from the two stations. 

Date and time Station number Speed (m/s) Direction (degrees) 

1/10/2018 0:00 1 7.24 190.3 

1/10/2018 0:00 2 1.49 273.2 

1/10/2018 0:01 1 6.12 190.5 

1/10/2018 0:01 2 1.09 238.6 

1/10/2018 0:02 1 8.61 187.8 

1/10/2018 0:02 2 0.64 248.7 

1/10/2018 0:03 1 7.16 191.3 

1/10/2018 0:03 2 1.13 247.3 

1/10/2018 0:04 1 6.76 182.3 

1/10/2018 0:04 2 1.93 246.6 

1/10/2018 0:05 1 6.92 191.7 

1/10/2018 0:05 2 0.36 283.0 

 

2.3. Wind Power Prediction Model Development 
The data was first processed by aggregating the wind speed and direction values. 

The data was divided into two sets: one for training and the second for testing the model. 

The training set was utilised to develop the predictive model, while the testing set was 

employed to assess the model's performance. A prediction model was developed using 

the Python programming language. The autoregressive integrated moving average 

(ARIMA) model was selected as a machine learning algorithm. The algorithm was chosen 

since we had sufficient historical data to accurately capture the underlying patterns and 

estimate model parameters. ARIMA models are represented using the notation (p, d, q). 

p is the autoregressive order, representing the number of past observations utilised as 

predictors. d is the differencing order, representing the frequency of differencing applied 

to attain stationarity. q is the moving average order, representing the count of past 

forecast errors employed in the prediction equation. By decomposing the time series into 

the three components, the individual contributions of trend, seasonality, and noise to the 

overall behaviour of the wind data were analysed. This decomposition was used to 

forecast future wind power based on historical patterns and identify any changes or 

anomalies in the data. 

The trend component captures the long-term behaviour of the time series [15]. The 

component indicates any long-term changes in wind power, such as shifts in prevailing 

winds over time. The seasonality component accounts for the repetitive patterns or cycles 

in the time series that occur at fixed intervals within a year [16]. The repetitive patterns 

were captured and reflected in the model's predictions by incorporating a seasonality 

component in the ARIMA model. Resid or residual represents the difference between the 

predicted and observed values [17]. It accounts for the unexplained variation or the 

remaining noise the model could not capture. 

AIC (Akaike Information Criterion) statistical measure was used for model selection 

and comparison since different models were being compared. It provided a way to 

evaluate the adequacy of the model to the data of different models while considering 

their complexity. The model with the lowest AIC is the best fit, considering its ability to 

explain the data and its complexity. From Table 2, the output suggests that ARIMA (0,1,0) 

x (0,1,0,12) was chosen since it yields the lowest value of 2.0. 
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Table 2. Arima forecasting. 

ARIMA model AIC value 

ARIMA (0, 0, 0) x (0, 0, 1, 12) 12   AIC:4.0 

ARIMA (0, 0, 0) x (0, 1, 0, 12) 12   AIC:2.0 

ARIMA (0, 0, 0) x (0, 1, 1, 12) 12   AIC:4.0 

ARIMA (0, 0, 0) x (1, 0, 0, 12) 12   AIC:4.0 

ARIMA (0, 0, 0) x (1, 0, 1, 12) 12   AIC:6.0 

ARIMA (0, 0, 0) x (1, 1, 0, 12) 12   AIC:4.0 

ARIMA (0, 0, 0) x (1, 1, 1, 12) 12   AIC:6.0 

ARIMA (0, 0, 1) x (0, 0, 1, 12) 12   AIC:6.0 

ARIMA (0, 0, 1) x (0, 1, 0, 12) 12   AIC:4.0 

ARIMA (0, 0, 1) x (0, 1, 1, 12) 12   AIC:6.0 

ARIMA (0, 0, 1) x (1, 0, 0, 12) 12   AIC:6.0 

ARIMA (0, 0, 1) x (1, 0, 1, 12) 12   AIC:8.0 

ARIMA (0, 0, 1) x (1, 1, 0, 12) 12   AIC:6.0 

ARIMA (0, 0, 1) x (1, 1, 1, 12) 12   AIC:8.0 

ARIMA (0, 1, 0) x (0, 0, 1, 12) 12   AIC:4.0 

ARIMA (0, 1, 0) x (0, 1, 0, 12) 12   AIC:2.0 

ARIMA (0, 1, 0) x (0, 1, 1, 12) 12   AIC:4.0 

ARIMA (0, 1, 0) x (1, 0, 0, 12) 12   AIC:4.0 

 

The model was then trained and evaluated. The seasonality technique was refined 

to improve the model’s accuracy. The technique incorporated seasonal differencing and 

seasonal orders into the ARIMA model to form SARIMAX. The SARIMAX forecasting model 

modifies the ARIMA model to include exogenous variables, which is appropriate for 

forecasting time series that are influenced by external factors. It accounts for both the 

temporal dependencies and the seasonal patterns associated with wind data, enabling 

accurate predictions. Various parameters (seasonality, trend, and noise) were integrated, 

and exogenous variable parameters were incorporated to form the SARIMAX function. 

3. Results and Discussion 
This study aimed to predict wind speed and direction using time series machine 

learning models, specifically ARIMA and SARIMAX. The ARIMA model was first applied to 

the dataset, which consisted of historical wind speed and direction data. The model 

successfully captured the data patterns and exhibited moderate predictive performance 

for both wind speed and direction. However, ARIMA did not account for the potential 

effects of external factors on wind patterns. The SARIMAX model, which incorporates 

exogenous variables, was employed to address this constraint. By including additional 

weather variables, such as topology, as exogenous input, the SARIMAX model improved 

the prediction accuracy. 

3.1. Data Analysis and Visualisation 
Data analysis was carried out to determine the best model for the data. Time series 

indexing was used for efficient retrieval, manipulation, and analysis of data based on 

specific time intervals of one month. The downsampling and aggregation method for 

indexing was chosen since we dealt with large datasets. The technique uses averaging or 
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summing values within fixed time intervals without sacrificing critical information. Due to 

the complexity of the data and for better visualisation, the average wind speeds and 

directions for that month were used. The beginning of each month was used as the 

timestamp.  

Statistical measures provided essential insights into the characteristics of the data. 

It helped to understand the characteristics and patterns within the data. The mean, range, 

and dispersion of the data were identified. This helped visualise any outliers, trends, or 

seasonal patterns that existed. These measures enhanced the accuracy and reliability of 

predictions and contributed to a deeper understanding of the underlying patterns and 

dynamics in the data. Our data did not have significant outliers, as shown in Table 3, 

making the data reliable for training the model. 

 

Table 3. Statistical analysis of data. 

 

Station 1 Station 2 

Speed  

(m/s) 

Direction 

(degrees) 

Speed  

(m/s) 

Direction 

(degrees) 

Count 115663 163845 73313 155659 

Mean 6.50 176.46 4.12 167.64 

Standard Deviation 3.92 53.22 3.75 62.79 

 

To investigate the wind data further, the average wind direction for each month 

from stations 1 and 2 was plotted against the start of every month. The plotted wind 

direction is seen in Figure 2 (a). The average wind speed from stations 1 and 2 for each 

month was plotted against the start of every month, as shown in Figure 2 (b). Different 

wind speeds and directions were recorded in different months of the year due to different 

seasons. 

 
Figure 2. Plotted wind 
data: (a) wind direction; 
(b) wind speed. 

 

  
 (a) (b) 

 

3.2. Wind Power Prediction using ARIMA 
Using the time series decomposition method, the model was decomposed into 

three distinct components: trend, seasonality, and resid. 

3.2.1. Trend Analysis 
Long-term changes in wind power, such as shifts in prevailing winds over time, were 

analysed and plotted to investigate trends in the wind data. The trend component 

captured the long-term behaviour of wind power. Some unique patterns appear when 
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the wind speed and wind direction data are plotted against different times of the year 

due to different seasons, as shown in Figures 3 (a) and 3 (b). 

 

Figure 3. Trend: (a) wind 
direction; (b) wind speed. 

 

 
 

 (a) (b) 
 

3.2.2. Seasonality Analysis 
The repetitive patterns or cycles in the time series that occur at fixed intervals 

within a year were analysed and plotted for better visualisation to investigate seasonality 

in the wind data. Figure 4 (a) and Figure 4 (b) show repetitive patterns in the wind 

direction and wind speed data, respectively, at different months of the year. Seasonality 

corresponds to variations in wind power due to different seasons, such as prevailing 

winds shifting between different seasons at different months. This shows that the model 

accurately represents the underlying dynamics of the data, increasing confidence in our 

predictions. 

 

Figure 4. Seasonality:  
(a) wind direction;  
(b) wind speed. 

 

 
 

 (a) (b) 
 

3.2.3. Resid Analysis 
Resid represents the difference between the predicted and observed values. It 

accounts for the unexplained variation or the remaining noise the model could not 

capture. Wind data were analysed and plotted to investigate the difference between the 

predicted and observed values. It was analysed to determine noise and variability in the 

wind data. From Figures 5 (a) and 5 (b), the residuals are closely distributed; hence, the 

model adequately accounts for the mean and variability of the data points. Thus, our 

model is forecasting correctly. 
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Figure 5. Resid: (a) wind 
direction; (b) wind speed. 

 

 
 

 (a) (b) 
 

3.3. Wind Power Prediction using SARIMAX 
Figure 6 (a) provides an estimate of the expected wind direction, and Figure 6 (b) 

provides an estimate of the predicted wind speed and wind direction, respectively. Figure 

6 (a) and Figure 6 (b) showed the significance of the differences between predicted and 

observed or actual values from the training set. The predicted mean in SARIMAX 

represents the central tendency of the predictions generated by the trained model. It 

indicates the anticipated average wind energy production at a specific future time. 

 
Figure 6. SARIMAX 
prediction (mean): (a) 
direction; (b) speed. 

  
 (a) (b) 

 

Figures 7 (a) and 7 (b) represent the direction and speed forecasts for wind, 

respectively. Forecast refers to the predicted value of our wind speed and direction. The 

line plots show the observed values compared with forecast predictions. Our projections 

correspond to the actual values, revealing seasonality across the year. This indicates that 

our model captures the underlying patterns and trends in the wind data. This provides 

confidence in the reliability of our forecasts. 
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Figure 7. SARIMAX 
prediction (forecast): 
(a) direction; (b) speed. 

 
 

 (a) (b) 

4. Conclusions 
This research Led to the development of a time series-based machine learning 

model capable of forecasting wind speed and direction. It was demonstrated that wind 

speed and direction predictions using time series machine learning, specifically ARIMA 

and SARIMAX, were relatively close to the testing set. The ARIMA model was initially 

applied to the dataset, which consisted of historical wind speed and direction data. The 

model successfully captured the temporal patterns and exhibited moderate predictive 

performance for both wind speed and direction. Then, the SARIMAX model was 

employed, which incorporated exogenous variables, improving the prediction accuracy. 

This research holds significant relevance as contemporary forecasting methods are in 

demand, and computational time is constrained in practical applications. 
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Abbreviations 
AIC   Akaike information criterion 

ANN  Artificial neural network 

ARIMA  Autoregressive integrated moving average 

CFD  Computational fluid dynamics 

IoT   Internet of things 

RMSE  Root mean squared error 

SARIMAX  Seasonal autoregressive integrated moving average with exogenous 

factor 

SODAR  Sound detection and ranging 

WASP  Wind atlas analysis and application programme 
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